Performance Evaluation of FPN-Attention Layered Model for Improving Visual Explainability of Object Recognition

객체 인식 설명성 향상을 위한 FPN-Attention Layered 모델의 성능 평가

  • Youn, Seok Jun (Seoul National University Institute of New Media and Communication) ;
  • Cho, Nam Ik (Seoul National University Institute of New Media and Communication)
  • 윤석준 (서울대학교 뉴미디어통신공동연구소) ;
  • 조남익 (서울대학교 뉴미디어통신공동연구소)
  • Published : 2022.06.20

Abstract

DNN을 사용하여 객체 인식 과정에서 객체를 잘 분류하기 위해서는 시각적 설명성이 요구된다. 시각적 설명성은 object class에 대한 예측을 pixel-wise attribution으로 표현해 예측 근거를 해석하기 위해 제안되었다, Scale-invariant한 특징을 제공하도록 설계된 pyramidal features 기반 backbone 구조는 object detection 및 classification 등에서 널리 쓰이고 있으며, 이러한 특징을 갖는 feature pyramid를 trainable attention mechanism에 적용하고자 할 때 계산량 및 메모리의 복잡도가 증가하는 문제가 있다. 본 논문에서는 일반적인 FPN에서 객체 인식 성능과 설명성을 높이기 위한 피라미드-주의집중 계층네트워크 (FPN-Attention Layered Network) 방식을 제안하고, 실험적으로 그 특성을 평가하고자 한다. 기존의 FPN만을 사용하였을 때 객체 인식 과정에서 설명성을 향상시키는 방식이 객체 인식에 미치는 정도를 정량적으로 평가하였다. 제안된 모델의 적용을 통해 낮은 computing 오버헤드 수준에서 multi-level feature를 고려한 시각적 설명성을 개선시켜, 결괴적으로 객체 인식 성능을 향상 시킬 수 있음을 실험적으로 확인할 수 있었다.

Keywords

Acknowledgement

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(2021R1A2C2007220). 이 논문은 2022년도 BK21 FOUR 정보기술 미래인재 교육연구단에 의하여 지원되었음.