과제정보
이 논문은 2022년도 중소벤처기업부의 기술개발사업 지원에 의한 연구임 [S2977538].
최근에는 우수한 성능의 딥러닝 기술을 활용한 장비와 프로그램이 개발되고 있으나 기술의 특성상 모든 환경에서 우수한 성능을 보여주지 못하고 고 사양의 서버와 같은 환경에서의 성능만을 보장하고 있다. 따라서 이에 대한 개선으로 엣지 디바이스 독립적으로 혹은 클라우드 의존과 인터넷 연결을 최소화 할 수 있는 엣지 컴퓨팅 기술이 제안되고 있으며 경량 내장형 시스템에 적합한 인공지능 기술의 개발이 필요하다. 본 논문에서는 객체검출 모델을 적은 연산과 효율적인 구조로 설계하고 생성된 모델을 임베디드 보드에서 원활하게 실행할 수 있도록 중립 모델로 변환하고 경량화 하는 방법에 대해 소개한다. Qualcomm snapdragon 프로세서가 갖춰진 임베디드 보드를 목표로 하였고 편의를 위해 SNPE(snapdragon neural processing engine) SDK를 이용하여 실험을 진행하였다. 실험 결과 변환된 중립모델이 기존 모델과 비교하여 압축된 모델 크기 대비 미미한 성능 저하가 발생함을 확인할 수 있었다.
이 논문은 2022년도 중소벤처기업부의 기술개발사업 지원에 의한 연구임 [S2977538].