Acknowledgement
이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임.(No.2020R1A2C1 006497).
This paper is a study on singing voice synthesis modeling using a generator loss function, which analyzes various factors that may occur when applying BEGAN among deep learning algorithms optimized for image generation to Audio domain. and we conduct experiments to derive optimal quality. In this paper, we focused the problem that the L1 loss proposed in the BEGAN-based models degrades the meaning of hyperparameter the gamma(𝛾) which was defined to control the diversity and quality of generated audio samples. In experiments we show that our proposed method and finding the optimal values through tuning, it can contribute to the improvement of the quality of the singing synthesis product.
본 논문은 생성자 손실함수를 이용한 가창 음성합성 모델링에 대한 연구로서 기존 이미지 생성에 최적화된 딥러닝 알고리즘 중 BEGAN모델을 오디오 생성모델(SVS모델)에 적용시킬 때 발생할 수 있는 여러 요인에 대해 분석하고 최적의 품질을 도출하기 위한 실험을 수행하였다. 특히 BEGAN 기반 모델에서 제안된 L1 loss가 어느 시점에서 감마(𝛾)파라미터의 역할을 상실하게 한다는 점을 개선하고자 알파(𝛼)파라미터를 추가한 후 각 파라미터 값들의 구간별 실험을 통해 최적의 값을 찾아냄으로써 가창합성 생성물의 품질향상에 기여할 수 있음을 확인하였다.
이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임.(No.2020R1A2C1 006497).