A Synthetic Dataset for Korean Knowledge Graph-to-Text Generation

한국어 지식 그래프-투-텍스트 생성을 위한 데이터셋 자동 구축

  • Published : 2022.10.18

Abstract

최근 딥러닝이 상식 정보를 추론하지 못하거나, 해석 불가능하다는 한계점을 보완하기 위해 지식 그래프를 기반으로 자연어 텍스트를 생성하는 연구가 중요하게 수행되고 있다. 그러나 이를 위해서 대량의 지식 그래프와 이에 대응되는 문장쌍이 요구되는데, 이를 구축하는 데는 시간과 비용이 많이 소요되는 한계점이 존재한다. 또한 하나의 그래프에 다수의 문장을 생성할 수 있기에 구축자 별로 품질 차이가 발생하게 되고, 데이터 균등성에 문제가 발생하게 된다. 이에 본 논문은 공개된 지식 그래프인 디비피디아를 활용하여 전문가의 도움 없이 자동으로 데이터를 쉽고 빠르게 구축하는 방법론을 제안한다. 이를 기반으로 KoBART와 mBART, mT5와 같은 한국어를 포함한 대용량 언어모델을 활용하여 문장 생성 실험을 진행하였다. 실험 결과 mBART를 활용하여 미세 조정 학습을 진행한 모델이 좋은 성능을 보였고, 자연스러운 문장을 생성하는데 효과적임을 확인하였다.

Keywords

Acknowledgement

이 논문은 2020년도 정부(과학기술정보통신부)의 재원으로 정보통신기술기획평가원의 지원을 받아 수행된 연구임 (No. 2020-0-00368, 뉴럴-심볼릭(neural-symbolic) 모델의 지식 학습 및 추론 기술 개발). 본 연구는 과학기술정보통신부 및 정보통신기술기획평가원의 대학ICT연구센터지원사업의 연구결과로 수행되었음 (IITP-2022-2018-0-01405).