Acknowledgement
본 연구는 2022년도 정부의 재원으로 한국연구재단의 지원 (NRF2020R1A2B5B01098937)을 받아 수행된 연구입니다. 이에 감사드립니다.
현재 인공지능은 공학적 문제 해결 외에도 다양한 분야에 적용되어 매우 친숙하게 활용되고 있다. 특히 하천 분야에서는 시설물 주위 국부세굴 또는 어류 서식처 분석과 같이 관련 변수들의 복잡성으로 적절한 결과를 쉽게 얻어내기 어려운 것들에 적용되고 있다. 그 외에도 인공지능 기법을 적용할 수 있는 분야로 하천에서의 수위를 이용하여 유량을 예측하는 것이 있다. 기존에는 수위-유량 관계 곡선을 만들어 수위를 이용하여 유량을 예측하였으나, 관계곡선 제작에 활용된 수위와 유량 범위에서 벗어나는 경우 과다한 유량으로 계산되는 경우가 있다. 본 연구에서는 인공지능 기법 중 하나인 인공신경망 기법을 사용하여 하천의 유량 예측을 수행하였다. 기존 국가수자원관리종합정보시스템에 기록된 자료를 활용하여 수위와 유량 자료를ANN에 학습시키고 학습에 활용하지 않은 시기의 자료를 이용하여 전반적인 유량 예측 성능과 루프형 수위-유량 관계 곡선을 생성할 수 있는지를 검토하였다. 또한 학습 범위를 벗어난 홍수량에 대한 측정 결과를 검토하고, 기존 수위-유량 관계곡선과 비교하여 그 성능을 검토하였다.
본 연구는 2022년도 정부의 재원으로 한국연구재단의 지원 (NRF2020R1A2B5B01098937)을 받아 수행된 연구입니다. 이에 감사드립니다.