Acknowledgement
본 연구는 수자원공사(K-water) 개방형 혁신 R&D 사업의 지원을 받아 수행되었습니다.
세계적 규모의 팬데믹 감염병의 출현은 전 세계적으로 경제적, 문화적, 사회적 파급효과가 매우 강력하며 전 인류를 위협하고 있다. 최근에 발병한 중증급성 호흡기질환 코로나바이러스 2(Severe Acute Respiratory Syndrome Coronavirus 2, SARS-CoV-2)는 2019년 12월 중국 우한에서 첫 보고 되었고 2022년 현재까지 종식되지 않고 있으며 바이러스의 전파력과 치명률이 높고 무증상 감염상태일 때에도 전염이 가능하여 현재 역학조사의 사후적 대응에 대한 한계가 있어 선제적 대응을 위한 수단이 필수 불가결해지고 있는 실정이다. 하수기반역학(Waste Based Epidemiology, WBE)이란 하수처리장으로 유입되기 전의 하수를 분석하여 하수 집수구역 내 도시민의 생활상을 예측하는 것으로 하수로 배출된 감염자의 분비물 및 배설물 속 바이러스를 하수관로에서 신속하게 검출함으로써 특정지역의 감염성 질환 전파 정도와 유행하는 타입(변이)등을 분석하고 기존 역학조사의 문제점을 극복할 수 있으며 선제적인 대응이 가능하다. 현재 COVID-19의 대유행과 관련하여 WBE를 기반으로 한 다양한 연구가 진행되고 있으며 실제 환자의 발생과 상관관계가 있음이 확인되고 있고 백신 접종과 새롭게 발생한 변이바이러스의 관계 속에서 발생하는 변수를 고려한 모델이 없다는 점을 들어 새로운 감염병 확산 예측 모델에 대한 필요성 또한 커지고 있다. 본 연구에서는 병원에서부터 하수처리장까지의 하수관거와 하수처리장에서의 SARS-CoV-2 검출농도 및 거동을 파악하는 것을 목적으로 하고 있으며 COVID-19의 감염규모 확산에 관한 방법론에서 수학적모델 (Euler Method, RK4 Method, Gillespie Algorithm)과 딥러닝 기반의 Nowcasting model과 Fore casting model을 살펴보고자 한다.
본 연구는 수자원공사(K-water) 개방형 혁신 R&D 사업의 지원을 받아 수행되었습니다.