과제정보
본 연구는 2021년도 K-water 현업 내부전문가자문 요청을 받아 수행된 과업입니다. 현업에서 제공해 주신 자료 및 의견 피드백에 대하여 진심으로 감사드립니다.
임진강 수계는 북측 지역이 다수를 차지하는 유역 특성으로 예고 없는 상류 급방류, 강우 등으로 인해 댐 운영에 근본적 어려움이 있으며, 이에 따라 홍수조절지 및 댐 하류 계측 가능 지역의 취득 자료를 고려한 하천 수위 변화에 대한 사전 예측을 필요로 하고 있다. 홍수기 하천 도달시간 및 수위예측 기법으로는 물리 기반 및 데이터 기반 모델들이 다양하게 연구되어 왔으며, 일부 연구성과들은 현업에 활용하고 있다. 물리기반 모델은 하천 지형 변화에 대한 자료 취득 및 분석에 많은 시간을 요하는 단점은 있으나, 설명 가능한 모델을 구현할 수 있을 것으로 사료 된다. 반면, 데이터 기반 인공지능 모델은 짧은 시간 및 비용으로 모델을 개발할 수 있으나, 복잡한 알고리즘구현 시 설명이 불가하여 일관성을 의심 받을 수 있다. 본 논문에서는 홍수 도달시간과 하류 수위 상승에 대하여 설명 가능한 인공지능 알고리즘 및 시뮬레이션 프로그램을 개발하고자 하였다. 홍수 도달시간 예측은 기존 조견표 방식에서 고려하지 않았던 홍수파의 영향을 추가 변수화 하고, 데이터의 전후처리를 통하여 도달시간을 예측하였다. 실시간 하류 수위 예측은 댐 방류량, 주변 강우, 조위 등을 고려하여 도달시간 후 수위를 예측할 수 있도록 구현하였으며, 자료 동화 기술을 일부 적용하였다. 미래 방류조건에 대한 시뮬레이션을 위해서는 미래 방류량, 예상 강우 입력 시 하천 지점별 수위 상승을 예측할 수 있도록 알고리즘 및 프로그램을 개발하였다. 이를 구현하기 위하여 다양한 인공지능 알고리즘을 이용한 학습, 유전자 알고리즘을 이용한 가중치 학습 제한 조건내 최적화, 수위파와 조위파의 중첩의 정리 등을 이용하여 예측 정확도 및 신뢰성을 제고 하였다. 인공지능 분석결과의 현업활용성 제고를 위하여 시뮬레이터 프로그램을 개발하여 현업에 적용하였다.
본 연구는 2021년도 K-water 현업 내부전문가자문 요청을 받아 수행된 과업입니다. 현업에서 제공해 주신 자료 및 의견 피드백에 대하여 진심으로 감사드립니다.