Acknowledgement
본 연구는 2021년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행되었습니다.(NRF-2021R1A2C2003471)
본 연구는 머신러닝 기반의 상수도 모니터링 시스템의 예측 모델을 개발하고, 예측 모델의 적용이 가능성을 검토하였다. 상수도모니터링 시스템은 상수관망에 설치된 센서에서 수집된 자료를 모니터링 할 수 있어 운영자의 상수도 시설물의 관리 편의성을 높일 수 있다. 특히 수리학적 모델을 적용하여 계산된 값과 측정된 값을 비교해 이상치가 발생하면 운영자에게 이를 알려주므로 시스템내의 문제점을 빠르게 확인할 수 있다. 그러나 수리학적 모델은 입력자료가 증가됨에 따라 계산시간이 많이 소요되는 문제가 있고, 계산된 값의 정확도가 낮아지므로. 이러한 문제를 보완하기 위해 머신러닝 기반의 예측 모델을 개발하여 이를 해결하고자 하였다. 예측 모델은 GS 이니마 브라질(GS Inima Brazil)에서 운영중인 아라사투바(Aracatuba) 지역 주사라(Jussara) DMA(District Metered Area)의 2018년 1월에서 7월까지의 운영자료를 이용하였으며, 상수도 모니터링 시스템에서 상수관로 수압에 영향을 미치는 영향 인자들을 분석하고, 하이퍼파라미터 최적화를 통한 수압 예측 모델을 개선하였다. 금회 연구는 머신러닝 기반의 모델을 통하여 상수관망의 시간변화에 따른 장래 예측 수압을 검토할 수 있었다는데 큰 의의가 있다.
본 연구는 2021년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행되었습니다.(NRF-2021R1A2C2003471)