Development of high-order method of porous shallow water equations for urban inundation modeling

도시범람모의를 위한 다공성천수방정식의 고차 정확도 기법 개발

  • 정재영 (서울대학교 건설환경종합연구소) ;
  • 황진환 (서울대학교 건설환경공학부)
  • Published : 2022.05.19

Abstract

일반적으로 유체와 구조물간 상호작용의 수리동역학적 모의에서는 벽경계조건을 통하여 유동에 대한 구조물의 영향이 반영된다. 하지만 도심지에서 발생한 홍수를 예측하려는 경우 이러한 방법으로는 밀집한 구조물들 사이에 형성된 좁은 길들로 인하여 세밀한 격자망을 요하여 큰 계산량을 유발하고 빠른 예측 속도를 기대할 수 없게 한다. 최근 이러한 문제를 극복하기 위해 성긴 격자망에서도 구조물의 유체에 대한 영향을 반영할 수 있도록 하는 방법들이 큰 관심을 받고 있다. 그 중에서도 다공성 천수방정식은 벽경계조건 대신 다공도(posority)의 개념을 이용한 모형으로 도시범람모의에 있어 계산량과 정확도를 가장 적절하게 타협한 모형으로 보고되고 있다. 이러한 흐름에 맞추어 본 연구는 다공도 천수방정식을 해석하는 수치 기법을 개발하였고, 여기에 최근 쌍곡선계 방정식의 수치적 연구들에서 소개된 주요 특징들이 반영되도록 설계하였다. 우선, WENO 기법과 Runge-Kutaa 기법을 통하여 공간과 시간에 대한 고차 정확도를 만족시켰다. 이 때, 재구성 변수와 알고리즘를 새롭게 제시하여 정상흐름조건에 대한 플럭스항과 생성·소멸항간 절단오차에 의한 비물리적인 흐름생성을 억제하였다. 또한, 수치모의 중 음수심의 발생으로 인하여 수치모형이 불안정해지는 현상을 막기 위해, 양-보존성 제한자를 구축하였다. 마지막으로 도심지에서 즐비한 인위적인 구조물에 의해 나타나는 지형적인 불연속의 효과를 적절하게 반영할수 있도록 정상파 재구축의 단계를 구축하여 수치 기법에 반영하였다. 이렇게 구성된 수치기법은 리만문제의 해석해에 기반하여 기존의 주요 연구들의 결과와 비교되었고, 그 결과 본 연구의 방법이 정확성, 수렴성, 안전성의 측면에서 가장 우수함을 수치적으로 증명하였다.

Keywords

Acknowledgement

본 연구는 2021년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구입니다(No.2020R1A2B5B01002249). 이에 감사드립니다.