Comparison of image quality according to activation function during Super Resolution using ESCPN

ESCPN을 이용한 초해상화 시 활성화 함수에 따른 이미지 품질의 비교

  • Published : 2022.05.26

Abstract

Super-resolution is the process of converting a low-quality image into a high-quality image. This study was conducted using ESPCN. In a super-resolution deep neural network, different quality images can be output even when receiving the same input data according to the activation function that determines the weight when passing through each node. Therefore, the purpose of this study is to find the most suitable activation function for super-resolution by applying the activation functions ReLU, ELU, and Swish and compare the quality of the output image for the same input images. The CelebaA Dataset was used as the dataset. Images were cut into a square during the pre-processing process then the image quality was lowered. The degraded image was used as the input image and the original image was used for evaluation. As a result, ELU and swish took a long time to train compared to ReLU, which is mainly used for machine learning but showed better performance.

초해상화란 저화질의 이미지를 고화질의 이미지로 변환하는 과정이다. 본 연구에서는 ESPCN 을 이용하여 연구를 진행하였다. 초해상화 심층 신경망에서 각 노드를 거칠 때 가중치를 결정하는 활성화 함수에 따라 같은 입력 데이터를 받더라도 다른 품질의 이미지가 출력될 수 있다. 따라서 활성화 함수 ReLU, ELU, Swish를 적용시켜 같은 입력 이미지에 대한 출력 이미지의 품질을 비교하여 초해상화에 가장 적합한 활성화 함수를 찾는 것이 이 연구의 목적이다. 초해상화를 위한 Dataset은 BSDS500 Dataset을 사용하였으며, 전처리 과정에서 이미지를 정사각형으로 자른 뒤 저화질화 하였다. 저화질화된 이미지는 모델의 입력 이미지에 사용되었고, 원본 이미지는 이후 출력 이미지와 비교하여 평가하는데 사용되었다. 학습 결과 머신 러닝에 주로 쓰이는 ReLU보다는 그 단점이 개선된 ELU, swish가 훈련 시간은 오래 걸렸지만 좋은 성능을 보였다.

Keywords

Acknowledgement

이 논문은 2021학년도 경기과학고등학교 자율연구의 지원을 받아 제작되었습니다.