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33 1. Types of Knowledge distillation

B =304 AMfst=e ASL object detection ©of Self-
knowledge distillation 2 AL35t0] AFAQ ML 7JMsIAY
teacher 7} 929 % teacher-based method 2t 8] w.5}o] v]55t
2%90] 452 Yozt Blurred image o] 793 object
detection 2 433& w(S.-]. Cho et al.,2022)[4] Original
model 7} Knowledge distillation & ©o]-&3t model BC} =2
N2 Hozx7|x 3t} Fine-tuning 7]H3 37 object
detection task o] Self-knowledge distillation & X-&3}0] (Xu
et al.2021)[5] AL /fAs7|1E 8t N2 framework &
A 9HZhang et al 2022)[6]5}0] 1A A9l teacher-based method
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4L blurred image oA Knowledge

Model Original KD S-KD
mAP | VOC_blurry 66.5 67.4 69.0
VOC_sharp 73.4 74.8 78.0

2 1. Comparison on blurred image

® 2 9 79 1XA9 teacher-based method(FGFI)=
ResNet-101 & teacher 2 AAstY 1 27t Student(Baseline,
LGD)9] 7% ResNet-50 ¥} 101 2 A3t 52 vlasilt.
v A9 =& A& 7HX teacher-based model 2
olYA]gt  Self-Knowledge distillation & ©0]&5t¥3o %
AYHoz o ue 452 8y A2 AT 2 9ck

]
v A2 Tuva

Model Teacher Student(R50) | Student(R101)
Baseline N/A 38.8 40.6
FGFI R101 39.8 40.7
LGD N/A 40.3 42.1

3 2. Comparison with classical teacher-based method

B 3 9] 72 Weakly supervised object detection 7|99l
5

SLV o] Self-knowledge distillation(SKD)2 A £35}0] HLS
Adsteirt.
Model mAP mAP(applied SKD)
SLV(Thresholding) 55.0 56.6
SLV(Adaptive search) 55.7 57.2

F 3. Comparison with Self-knowledge distillation method
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Self-Knowledge distillation 2 ©0]&35t9E 7% teacher-
based method 2 %438l A BT} training cost 7} £0]EA
=gt 32y 3459 A 7]H2 ofyA|Tt teacher-based
method BT AZAA 4o o £FZ & AT SR
classic teacher-based method 2}9] H|wo]7] TjZo] %3]
NER 02 teacher-based method of H|5] @7 2o A5
B 4 9t 279 A7 A oo} Fict.
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