DOI QR코드

DOI QR Code

유동인구 예측을 위한 Global - Local 구조 기반의 시계열 Deep Learning 모델에 관한 연구

A Study on Deep Learning Model Based on Global-Local Structure for Crowd Flow Prediction

  • 고현모 (SK 텔레콤 Tech Center (T3K)) ;
  • 박상현 (연세대학교 컴퓨터과학과)
  • 발행 : 2021.11.04

초록

유동인구 예측은 상권의 특성에 따른 점포의 입지 선정 및 고객 맞춤형 마케팅 등 민간 분야에서부터 교통망 등 사회 간접 자본 설계를 위한 공공 분야에 이르기까지 다양한 목적으로 연구되어 왔으며, 최근에는 Covid-19 의 확산에 따라 그 중요도가 더욱 높아지고 있다. 보다 정교한 예측을 위해서는 전체적인 유동 인구 뿐만 아니라 특성 별로 세분화된 하위 그룹에 대해서도 정확한 예측이 요구되나, 기존의 예측 모델들은 이러한 데이터의 계층 구조를 고려하지 않았다. 본 연구에서는 세분화된 하위 그룹 별 유동인구의 예측 정확도를 높이기 위해 전체 유동인구의 패턴을 동시에 활용하는 Global-Local 구조 기반의 Deep Learning 유동인구 분석 모델을 제안한다. 실험 결과 단일 시계열 데이터만을 사용하는 경우 대비 5.4%~52.6%의 예측 오류 감소 효과가 있음을 확인하였다.

키워드

과제정보

이 논문은 2021 년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임 (IITP-2017-0-00477, (SW starlab) Research and development of the high performance in-memory distributed DBMS based on flash memory storage in IoT environment)