과제정보
본 논문은 과학기술정보통신부 정보통신창의인재양성사업의 지원을 통해 수행한 ICT 멘토링 프로젝트 결과물입니다
DOI QR Code
소음은 난청, 스트레스 등의 원인이 된다. 본 연구에서는 ANC(Active Noise Cancellation)을 바탕으로, 기술적인 방법을 통해 소음을 저감 시키는 스피커를 구현하였다. ANC 란 소음 주파수의 위상을 180° 변환하여 주파수와 레벨이 동일한 역 소음을 발생시켜 주변 소음을 저감, 차단하는 기술이다. 현재 시중 제품들에 적용되는 일반적인 ANC 의 경우, 피드백(Feedback) 방식이라는 점과 시간 지연(Time gap)이 발생한다는 한계가 있다. 이를 보완하기 위해 AI 학습으로 소음을 미리 예측하여 시간 지연을 줄이는 방법을 고안했다. 순환 신경망(RNN)의 장기의존성 문제를 해결하는 시계열 예측 딥러닝 알고리즘인 LSTM(Long Short-Term Memory Network) 모델을 사용하였다. 또한, AI 학습 효율을 향상시킬 수 있는 하드웨어 장비들을 활용하였다.
본 논문은 과학기술정보통신부 정보통신창의인재양성사업의 지원을 통해 수행한 ICT 멘토링 프로젝트 결과물입니다