Acknowledgement
본 연구는 영산강·섬진강수계관리위원회 환경기초조사사업의 지원과 BK21 기후지능형간척지농업교육연구팀 장학금을 지원받아 수행되었습니다.
기후변화로 인한 자연재해는 해마다 크게 증가하고있으며, 홍수 및 가뭄의 강도와 빈도 증가, 지구온난화로 인한 하천 건천화 등 많은 문제들이 대두되고 있다. 특히, 물 순환과정의 핵심요소로 설명되는 유출량의 변동은 용수 공급과 홍수 대응 및 관리, 하천생태계 유지를 위한 환경에 영향을 미치고 있다. 따라서, 갈수량, 풍수량 등을 산정하여 하천별 유황특성을 결정하는 방법을 사용하고 있으나, 이와같은 지표는 계측자료가 과소한 경우 하천의 유황특성을 세부적으로 이해하고 정량적으로 제시하는데에 한계가있다. 따라서, 미계측 유역에서 Soil and Water Assessment Tool (SWAT)과 같은 수리해석모델이 광범위하게 이용되고있으며, SWAT 모델은 유역의 수치표고모형, 토양 특성, 토지이용 현황, 기상 현황, 유역의 매개변수 등을 반영하여 모델이 구동되고 있다. 하지만, 광범위하게 이용되고 적용성이 입증된 모델임에도 불구하고 입력자료의 불확실성 및 조사되지 않은 영농활동 등으로 인해 결과에 불확실성이 내포되어있으며, 불확실성을 줄이기 위해 실측된 하천의 유량 자료를 이용하여 검정 및 보정작업을 거치고 있다. 모델의 보정 방법으로는 SWAT-CUP과 같은 프로그램 이용되고 있지만, 모델에서 이용되는 매개변수로는 보정할수 있는 범위가 한정적이기 때문에 모델의 정확성을 높이는데에 한계가 있다. 따라서, 본 연구에서는 선암천 유역을 대상으로 모델의 매개변수를 보정하지 않고도 머신러닝 기법을 이용하여 모델의 결과를 향상시켰다. 보정 결과, 유량의 경우 R2가 0.42에서 0.91으로 향상되었으며, 특히 고유량 구간에서의 정확성이 매우 향상되었다. 본 연구에서 평가된 SWAT+머신러닝 결합 모형은 향후 모델 구동에 필요한 입력자료가 부족한 경우와 빠른 검정 및 보정 작업이 필요할 경우 활용될수 있을것으로 판단된다.
본 연구는 영산강·섬진강수계관리위원회 환경기초조사사업의 지원과 BK21 기후지능형간척지농업교육연구팀 장학금을 지원받아 수행되었습니다.