수환경 유출 유해화학물질 감지 및 식별에 관한 머신러닝 기법 적용 연구

A study on the application of machine learning for the detection of hazardous chemicals in the water environment

  • 남수한 (인제대학교 공과대학 환경공학과) ;
  • 권시윤 (서울대학교 건설환경공학부) ;
  • 권재현 (인제대학교 공과대학 환경공학과)
  • 발행 : 2021.06.03

초록

하천에서의 화학사고는 자연적 및 인위적인 원인으로 인해 발생할 수 있으며, 이러한 화학사고가 발생하게 되면 수환경 변화를 야기해 생태계나 인간에게 악영향을 발생시킬 수 있어 신속한 초기대응이 필요하다. 하천으로 유입된 화학물질의 평가에 대한 연구는 활발하게 진행되고 있지만, 화학사고 초기대응을 위한 연구는 미비한 실정이다. 초기대응을 위해서는 현장에서 측정이 용이한 지표를 활용해야하며, 이 지표를 이용해 유출된 화학물질에 대한 정보를 취득 할 수 있어야 한다. 하천의 주요 지점에는 pH 및 EC 등을 실시간으로 측정하는 자동측정망을 운영하고 있는데, 이러한 측정항목들을 지표로 활용한다면 하천 화학사고 대응을 위한 중요한 기초자료로 활용될 수 있을 것이다. 또한 측정된 데이터를 머신러닝 기법을 적용한다면 화학사고 발생 시 초기대응을 위한 기초자료로 활용될 수 있을 것이다. 본 연구에서는 분석한 유해화학물질은 총 26종이며, pH 및 EC를 화학물질들의 특성을 파악하기 위한 대체지표로 선정하였다. 화학물질의 농도변화에 따른 대체지표 변화를 측정하였으며, 실험결과를 바탕으로 성질이 유사한 화학물질들을 Group별로 분류하여 데이터베이스를 구축하였다. 구축된 데이터베이스를 바탕으로 머신러닝 기법인 Decision Tree, Random Forest, Gradient Boosting, XG Boosting에 적용해 각 알고리즘에 대한 성능 평가를 진행하여 가장 우수한 성능의 머신러닝 기법을 선정한다. 본 연구 결과를 바탕으로 선정된 머신러닝 기법을 활용한다면 향수 수환경 화학사고 발생 시 유출된 유해화학물질에 대한 정보를 제공할 수 있으며 그에 따른 신속한 대응의 기초자료로 활용될 수 있을 것으로 판단된다.

키워드

과제정보

본 결과물은 환경부의 재원으로 한국환경산업기술원의 화학사고대응환경기술개발사업의 지원을 받아 연구되었습니다.(2018001960003)