대체모형 PCK를 이용한 극한홍수 예측

Predicting extreme flood using a surrogate PCK model

  • 김종호 (울산대학교 공과대학 건설환경공학부) ;
  • 쩐옥빈 (울산대학교 공과대학 건설환경공학부)
  • 발행 : 2021.06.03

초록

모형이 갖는 불확실성의 정량화나 매개변수의 최적화는 계산시간의 기하급수적인 증가를 가져온다. 계산시간의 효율성을 극대화할 수 있는 기법으로 최근 대체모형이 개발되었으며, 다양한 분야에서 적용되고 있다. 그러나 대체모형은 훈련된 데이터 공간에서 크게 벗어난 극한 사상를 정확하게 모의하기는 어려운 단점이 있다. 본 연구는 이와 같은 대체모형의 단점을 개선할 수 있는 새로운 PCK(polynomial chaos-krigging) 기법을 제시한다. PCK는 PCE(polynomial chaos expansion) 기법과 OK(ordinary krigging) 기법을 결합한 것이며, PCK의 효과는 기존의 PCE 및 OK 모형의 결과와 비교하여 입증하였다. 본 연구의 분석 결과는 다음과 같다. (1) PCK는 더 적은 수의 훈련 샘플만으로도 원래 모형을 더 정확하게 대체할 수 있다. (2) 원래 훈련 샘플보다 약 3배 더 큰 극한사상을 모의했을 때, PCE와 OK는 예측이 실패하였지만, PCK의 예측은 정확하였다. (3) 민감도 분석 결과 PCK의 매개변수 특성과 거동이 PCE 및 OK보다 원래 모형의 특성과 거동에 더 일치한다. 본 연구에서는 3개의 대체모형의 결과를 원래모형의 결과와 비교하였으며 그 적용성을 극한강우에 대해 검토하였다. 일반적으로 훈련 샘플의 범위와 비슷한 강우사상에 대해서는 모든 대체모형의 결과가 우수하였으나, 훈련 샘플의 범위에서 벗어난 극한 사상의 모의는 PCK만 적용이 가능하였다. 제안된 대체모형은 극한사상의 예측에 있어 기존 대체모형보다 매우 향상된 정확도를 제공함을 확인할 수 있었다.

키워드

과제정보

본 연구는 환경부 물관리연구사업 R&D의 연구비지원(127554) 및 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구(NRF-2019R1C1C1004833)입니다. 이에 감사드립니다.