Why abandon Randomized MAC-Address : An Analysis of Wi-Fi Probe Request for Crowd Counting

Why abandon Randomized MAC-Address : Wi-Fi Probe Request 기반 유동인구 분석 방법

  • Published : 2021.10.03

Abstract

Estimation of the presence of people in real time is extremely useful for businesses in providing better services. Many companies and researchers have attempted various researches in order to count the number of floating population in specific space. Recently, as part of smart cities and digital twins, commercialization of measuring floating populations using Wi-Fi signals has become active in the public and private sectors. This paper explains the floating population measuring system from the perspective of general consumers(non-experts) who uses current population data. Specifically, it presents a method of estimating the floating population based on MAC-address values collected from smartphones. By distinguishing Real MAC-address and Random MAC-address values, we compare the estimated number of smartphone devices and the actual number of people caught on CCTV screens to evaluate the accuracy of the proposed method. And it appeared to have a similar correlation between the two datas. As a result, we present a method of estimating the floating population based on analyzing Wi-Fi Probe Requests

실시간으로 유동인구를 계측하는 기술은 다양한 산업 분야에서 공간 밀집도에 대한 통찰력을 제공하여 더 좋은 서비스 환경을 만들어준다. 이에 따라 여러 기업과 학계에서는 특정 공간의 유동인구 데이터를 계측하기 위해 오랫동안 다양한 연구를 시도해왔으며, 최근에는 스마트시티와 디지털트윈의 일환으로 Wi-Fi 신호를 활용한 유동인구 분석 사업화가 더욱 활발한 추세이다. 본 논문에서는 유동인구 데이터를 활용하는 일반 수요자(비전문가)의 관점에서 유동인구 계측 시스템에 대해 쉽게 이해할 수 있도록 설명한다. 구체적으로는 사람들이 소지한 스마트폰으로부터 수집되는 MAC-address 값 기반의 유동인구 추정 방법을 제시하는데, 추정값의 정확도를 분석하기 위해 Real MAC-address와 Random MAC-address 값을 구분한 뒤, Real MAC-address가 추출된 실제 스마트폰 기기 수와 CCTV 화면에 집계된 사람 수를 비교하는 실험을 진행한다. 그 결과 두 데이터 간의 유사한 상관 계수가 나타났다. 이러한 결과에 근거하여 MAC-address 분류를 통한 Wi-Fi Probe Request 기반 유동인구 분석 방법을 제시한다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음 (과제번호 21TBIP-C160515-01).