Implementation of Flood Risk Determination System using CNN Model

CNN 모델을 활용한 홍수 위험도 판별 시스템 구현

  • Published : 2021.10.03

Abstract

Flood damage is occurring all over the world, and the number of people living in flood-prone areas reached 86 million, a 25% increase compared to 2000. These floods cause enormous damage to life and property, and it is essential to decide on an appropriate evacuation in order to reduce the damage. Evacuation in anticipation of a flood also incurs a lot of cost, and if an evacuation is not performed due to an error in the flood prediction, a greater cost is incurred. Therefore, in this paper, we propose a flood risk determination model using the CNN model to enable evacuation at an appropriate time by using the time series data of precipitation and water level. Through this, it is thought that it can be utilized as an initial study to determine the time of flood evacuation to prevent unnecessary evacuation and to ensure that evacuation can be carried out at an appropriate time.

홍수 피해는 세계 각지에서 발생하고 있으며, 홍수에 취약한 지역에 사는 사람이 2000년에 비해 25% 증가한 8,600만 명에 이른다. 이러한 홍수는 인명과 재산에 막대한 피해를 남기며, 피해를 줄이기 위해선 적절한 시기에 대피를 결정하는 것이 필수적이다. 홍수를 예상하고 대피하는 것에도 많은 비용이 발생하며, 홍수 예측에 오류가 발생하여 대피하지 않는 경우에는 더 큰 비용이 발생한다. 따라서 본 논문에선 시계열 데이터인 강수량과 수위를 활용하여 적절한 시기에 대피가 이루어질 수 있도록 하기 위한 CNN모델을 활용하여 홍수 위험도 판별 모델을 제안한다. 이를 통해 최적의 대피시기를 결정하여 불필요한 대피를 막고, 적절한 시기에 대피가 이루어질 수 있도록 하는 초기 연구로서 활용할 수 있을 것으로 사료된다.

Keywords

Acknowledgement

This study was carried out with the support of 'R&D Program for Forest Science Technology(Project No. 2021340A00-2123-CD01) provided by Korea Forest Service(Korea Forestry Promotion Institute).