A study on improving the performance of face recognition system based on similarity

유사도 기반 얼굴인식 시스템 성능 향상 연구

  • Na, Seong-Won (Department of computer science and engineering, Konkuk University) ;
  • Lee, Sang-Hun (Department of computer science and engineering, Konkuk University) ;
  • Yoon, Kyoung-Ro (Department of computer science and engineering, Konkuk University)
  • Published : 2021.06.23

Abstract

최근 팬데믹으로 인해 다양한 산업에서 온라인화가 빠르게 진행되고 있다. 이러한 흐름에 따라 생체 신호를 이용한 로그인 시스템이나 자동 출결관리 시스템의 개발 또한 활발하게 연구되고 있다. 이에 본 논문에서는 생체 정보 중 얼굴을 이용하여 산업에서 도입 가능한 수준까지 얼굴인식 시스템의 성능을 향상 시키고자 한다. 우리는 성능향상을 위해 먼저 얼굴인식 시스템에서 성능 저하원인인 영상 속 얼굴 위치 및 각도 변화를 해결하고자 정면 얼굴 Capture 방법을 제안하였다. 두 번째로는 FRR 오류가 발생하면 추가적으로 정면얼굴을 추출하여 개인 인증을 다시 시도방법을 제안하였다. 검증을 위해 얼굴인식 분야에서 가장 많이 사용되고 있는 유사도 기반 프레임워크를 구현하여 제안한 성능향상 방법을 적용, 실험 하였으며 420명의 Database를 구축하고 2주 동안 99개의 비디오 데이터를 수집하여 실제 산업에서 도입 가능한 환경과 유사하게 구축해 우리의 제안 방법을 테스트 및 검증하였다.

Keywords

Acknowledgement

이 논문은 2020년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임 (No.20200021720012002 인공지능을 이용한 맞춤형 홈 트레이닝 플랫폼)