긴급 신고 접수 지원을 위한 대화 상태 추적 및 요약 기반 실시간 텍스트 분석

Real-time Text Analysis with Dialogue State Tracking and Summarizing to Assist Emergency Call Reporting

  • 오교중 (한국과학기술원(KAIST) 전산학부) ;
  • 김진원 (아일리스프런티어 선행기술연구팀) ;
  • 김일훈 (아일리스프런티어 선행기술연구팀) ;
  • 임채균 (한국과학기술원(KAIST) 전산학부) ;
  • 최호진 (한국과학기술원(KAIST) 전산학부)
  • 발행 : 2021.10.14

초록

소방 본부의 119 종합상황실에서는 24시간 국민의 안전을 위해 긴급 신고를 접수한다. 수보사 분들은 24시간 교대 근무를 하며 신고 전화에 접수 및 응대 뿐만 아니라 출동, 지휘, 관제 업무를 함께 수행한다. 이 논문에서는 이 같은 수보사의 업무 지원을 위해 우리가 구축한 음성 인식과 결합된 실시간 텍스트 분석 시스템에 대해서 소개하고, 출동 지령서 자동 작성을 위한 키워드 검출 및 대화 요약 및 개체명 인식에 기반한 대화 상태 추척 방법에 대해 설명하고자 한다. 대화 요약 기술은 음성 인식 결과를 실시간으로 분석하여 중요한 키워드의 검출 및 지령서 자동 작성을 위한 후처리를 수행하며, 문장 수준에서 개체명 인식 및 관계 분석을 통한 목적 대화의 대화 상태 추적을 수행한다. 이 같은 응용 시스템은 딥러닝 및 기계학습 기반의 자연어 처리 시스템이 실시간으로 텍스트 분석을 수행할 수 있는 기술 수준이 되었음을 보여주며, 긴급한 상황에서 많은 신고 전화를 접수하는 수보사의 업무 효율 증진 뿐만 아니라, 정확하고 신속한 위치 파악으로 신고자를 도와주어 국민안전 증진에 도움을 줄 수 있을 것으로 기대된다.

키워드

과제정보

이 논문은 2020년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임 (No. 2013-0-00131, (엑소브레인-총괄/1세부) 휴먼 지식증강 서비스를 위한 지능진화형 WiseQA 플랫폼 기술 개발)