기계독해 기반 한국어 의존 파싱

Korean Dependency Parsing as Machine Reading Comprehension

  • 발행 : 2021.10.14

초록

한국어 의존 파싱은 전이 기반 방식과 그래프 기반 방식의 두 갈래로 연구되어 왔고 그 중 그래프 기반 의존 파싱 방법은 문장 내의 모든 단어에 대해 인코딩한 후 지배소, 의존소에 대한 MLP를 적용하여 각각 표상을 얻고 Biaffine 어텐션을 통해 모든 단어 쌍에 대한 그래프 점수를 얻고 트리를 생성하는 방법이 대표적이다. Biaffine 어텐션 모델에서 문장 내의 각 단어들은 구문 트리 내의 서브트리의 역할을 하지만 두 단어간의 의존성만을 판단하기 때문에 서브 트리의 정보를 이용할 수 없다는 단점이 존재한다. 본 연구에서는 이러한 단점을 해결하기 위해 제안된 Span-Span(서브트리-서브트리)로의 서브트리 정보를 이용할 수 있도록 하는 기계 독해 기반 의존 파싱 모델을 한국어 구문 분석 데이터 셋에 적용하여 소폭의 성능향상을 얻었다.

키워드