KRBERT 임베딩 층에 따른 의미역 결정

Layerwise Semantic Role Labeling in KRBERT

  • 발행 : 2021.10.14

초록

의미역 결정은 문장 속에서 서술어와 그 논항의 관계를 파악하며, '누가, 무엇을, 어떻게, 왜' 등과 같은 의미역 관계를 찾아내는 자연어 처리 기법이다. 최근 수행되고 있는 의미역 결정 연구는 주로 말뭉치를 활용하여 딥러닝 학습을 하는 방식으로 연구가 이루어지고 있다. 최근 구글에서 개발한 사전 훈련된 Bidirectional Encoder Representations from Transformers (BERT) 모델이 다양한 자연어 처리 분야에서 상당히 높은 성능을 보이고 있다. 본 논문에서는 한국어 의미역 결정 성능 향상을 위해 한국어의 언어적 특징을 고려하며 사전 학습된 SNU KR-BERT를 사용하면서 한국어 의미역 결정 모델의 성능을 살펴보였다. 또한, 본 논문에서는 BERT 모델에서 과연 어떤 히든 레이어(hidden layer)에서 한국어 의미역 결정을 더 잘 수행하는지 알아보고자 하였다. 실험 결과 마지막 히든 레이어 임베딩을 활용하였을 때, 언어 모델의 성능은 66.4% 였다. 히든 레이어 별 언어 모델 성능을 비교한 결과, 마지막 4개의 히든 레이어를 이었을 때(concatenated), 언어 모델의 성능은 67.9% 이였으며, 11번째 히든 레이어를 사용했을 때는 68.1% 이였다. 즉, 마지막 히든 레이어를 선택했을 때보다 더 성능이 좋았다는 것을 알 수 있었다. 하지만 각 언어 모델 별 히트맵을 그려보았을 때는 마지막 히든 레이어 임베딩을 활용한 언어 모델이 더 정확히 의미역 판단을 한다는 것을 알 수 있었다.

키워드

과제정보

이 논문은 2020년 대한민국 교육부와 한국연구재단의 일반공동연구지원사업의 지원을 받아 수행된 연구임(NRF-2020S1A5A2A03042760).