Acknowledgement
이 논문은 2020년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임(No.2020-0-00368, 뉴럴-심볼릭(neural-symbolic) 모델의 지식 학습 및 추론 기술 개발) 본 연구는 과학기술정보통신부 및 정보통신기획평가원의 대학ICT연구센터육성지원사업의 연구결과로 수행되었음(IITP-2021-2016-0-00465)
지도 학습을 하기 위해선 레이블이 부착된 데이터셋이 필요하다. 크라우드소싱 서비스를 통해 데이터셋을 구축하는데 다수의 주석자(Annotator)가 관여한다. 다수의 주석자가 레이블을 할당하고 과반수인 레이블을 최종 정답으로 결정한다. 이 과정에서 최종 정답과 다른 후보 레이블의 정보가 누락된다. 이를 완화하고 목표 작업에 대한 성능을 높이기 위해 후보 레이블에 대한 정보를 반영하는 멀티 디코더 모델을 제안한다. KLUE-TC, SNLI, MNLI 데이터셋으로 정량적 성능 평가를 수행하였으며 실험한 데이터셋 모두 일괄적인 성능 향상을 보였다.
이 논문은 2020년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임(No.2020-0-00368, 뉴럴-심볼릭(neural-symbolic) 모델의 지식 학습 및 추론 기술 개발) 본 연구는 과학기술정보통신부 및 정보통신기획평가원의 대학ICT연구센터육성지원사업의 연구결과로 수행되었음(IITP-2021-2016-0-00465)