Gait Analysis and Machine Learning-based Classification Model using Smart Insole for Alzheimer's Disease Severity Classification

스마트인솔 기반 알츠하이머 중증도 분류를 위한 보행 분석 및 기계학습 기반 분류 모델

  • Jeon, YoungHoon (Dept. of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology) ;
  • Ho, Thi Kieu Khanh (Dept. of Software, Korea National University of Transportation) ;
  • Gwak, Jeonghwan (Dept. of Software, Korea National University of Transportation) ;
  • Song, Jong-In (Dept. of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology)
  • 전영훈 (광주과학기술원 전기전자컴퓨터공학과) ;
  • 호티키우칸 (한국교통대학교 소프트웨어학과) ;
  • 곽정환 (한국교통대학교 소프트웨어학과) ;
  • 송종인 (광주과학기술원 전기전자컴퓨터공학과)
  • Published : 2021.07.14

Abstract

본 연구는 주기적인 알츠하이머 병의 중증도 모니터링을 위해 스마트 인솔을 통한 보행 특징 추출과 머신러닝 기반 중증도 분류의 성능에 대해 살펴보았다. 최근 고령화가 가속화되는 추세에 있어 치매 환자가 급증하고 있으며, 중증도가 심해질수록 필요한 치료 비용 및 노력이 급증하기 때문에 조기 진단이 최선의 치료 전략으로 보여진다. 환자 친화적이고 저비용의 관성 측정 장치가 내장된 스마트 인솔만을 사용하여 다양한 보행 실험 패러다임에서 환자의 보행 특징을 추출하고, 이를 알츠하이머 병의 중증도 진단을 위한 머신러닝 기반 분류기를 훈련시켜 성능을 평가한 결과, 숫자세기와 같이 뇌에 부하를 주는 하위 작업이 포함된 복합 보행을 측정한 데이터셋을 사용하여 훈련된 분류 모델이 일반 걷기 데이터셋을 사용한 모델보다 성능이 높게 나타나는 것이 관찰되었다. 본 연구는 안전하고 환경적 제약이 적은 방법을 사용하여 시기 적절한 진단뿐만 아니라 주기적인 중증도 모니터링 시스템의 일환으로 활용될 수 있을 것이다.

Keywords

Acknowledgement

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. NRF-2020R1I1A3074141), the Brain Research Program through the NRF funded by the Ministry of Science, ICT and Future Planning (Grant No. NRF-2019M3C7A1020406), and "Regional Innovation Strategy (RIS)" through the NRF funded by the Ministry of Education.