LSTM Model Design to Improve the Association of Keywords and Documents for Healthcare Services

의료서비스를 위한 키워드와 문서의 연관성 향상을 위한 LSTM모델 설계

  • Published : 2021.05.03

Abstract

A variety of search engines are currently in use. The search engine supports the retrieval of data required by users through three stages: crawling, index generation, and output of search results based on meta-tag information. However, a large number of documents obtained by searching for keywords are often unrelated or scarce. Because of these problems, it takes time and effort to grasp the content from the search results and classify the accuracy. The index of search engines is updated periodically, but the criteria for weighted values and update periods are different from one search engine to another. Therefore, this paper uses the LSTM model, which extracts the relationship between keywords entered by the user and documents instead of the existing search engine, and improves the relationship between keywords and documents by entering keywords that the user wants to find.

현재 다양한 검색엔진들이 사용되고 있다. 검색엔진은 메타태그 정보를 기본으로 크롤링, 색인생성, 검색 결과 출력의 3단계를 거치며, 사용자가 원하는 자료의 검색을 도와준다. 그러나 키워드를 기반으로 검색해서 얻은 방대한 문서가 관련이 없거나 적은 문서일 경우도 많다. 이러한 문제점 때문에 검색 결과에서 내용을 파악하여 정확도를 분류를 해야 하는 번거로운 일이 발생하게 된다. 다양한 검색엔진을 통해 추출된 결과의 경우 검색엔진의 인덱스는 주기적으로 업데이트 되지만 가중치에 대한 기준과 업데이트 주기는 검색엔진마다 다르고 검색 순위 산정 기준이 서로 다르기 때문에 동일한 키워드를 검색어로 입력하고도 서로 다른 검색 순위를 보여주는 단점을 가지고 있다 따라서 본 논문에서는 기존 검색엔진 대신 사용자가 입력한 키워드와 문서의 연관성을 추출하여 사용자가 찾고자 하는 키워드를 입력했을 때 키워드와 문서의 연관성을 향상 시킬 수 있는 LSTM모델을 설계하고자 한다.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No.2018R1C1B5083789).