Detection of Helmet on Electric Scooter

전동 킥보드 헬멧 착용 탐지

  • 이선엽 (한양대학교 컴퓨터소프트웨어학부) ;
  • 부세영 (한양대학교 컴퓨터소프트웨어학부) ;
  • 박종일 (한양대학교 컴퓨터소프트웨어학부)
  • Published : 2021.11.26

Abstract

최근 전동 킥보드 사용량이 크게 늘었으나, 다른 이동수단 대비 낮은 안정성과 사용자들의 헬멧 착용에 대한 인식 부족으로 인해 사고의 위험성이 큰 상황이다. 이에 대하여 정부는 헬멧 착용을 강제하는 법률을 제정하였으나, 경찰력의 한계에 따른 단속 미비로 여전히 헬멧 착용율은 낮다. 본 연구는 YOLO v3 알고리즘을 통해 학습시킨 딥러닝 모델을 활용하여 도로 상황을 촬영한 동영상 내에서 헬멧 착용자와 미착용자를 구분하고 미착용자 탐지 시 알람을 제공하는 시스템을 제시한다. 기존 YOLO 알고리즘 및 신경망을 적용하되, 전동 킥보드 데이터를 새로 수집하고 클래스를 구분하여 학습시켰다. 소수의 탐지 및 분류 오류를 보정하기 위해, 히스토그램 간 유사도를 측정해 최종적으로 객체를 추적 및 확정하고, 객체에 대한 헬멧 착용 여부를 통계적으로 확인한다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부 및 정보통신기획평가원의 SW중심대학지원사업의 연구결과로 수행되었습니다. (2016-0-00023)