Star-Gas Misalignment in Galaxies: II. Origins Found from the Horizon-AGN Simulation

  • Khim, Donghyeon J. (Department of Astronomy and Yonsei University Observatory, Yonsei University) ;
  • Yi, Sukyoung K. (Department of Astronomy and Yonsei University Observatory, Yonsei University)
  • Published : 2021.04.13

Abstract

There have been many studies aiming to reveal the origins of the star-gas misalignment found in galaxies, but there still is a lack of understanding of the contribution from each formation channel candidate. We explore the properties, origins, and lifetimes of the star-gas misalignment using Horizon-AGN, a large-volume cosmological simulation. First, the misalignment fraction shows a strong anti-correlation with the kinematic morphology (V/sigma) and the cold gas fraction of the galaxy. This result is consistent with the result of integral field spectroscopy observations. Second, we have identified four main formation channels of misalignment and quantified their level of contribution: mergers (35%), interaction with nearby galaxies (23%), interaction with dense environments or their central galaxies (21%), and secular evolution including smooth accretion from neighboring filaments (21%). Third, the decay timescale of the misalignment is strongly linked with the kinematic morphology of the galaxy: early-type galaxies (2.28 Gyr) tend to have a longer misalignment lifetime than LTGs (0.49 Gyr). We also found that the morphology and cold gas fraction are both and independently anti-correlated with the misalignment lifetime.

Keywords