Search of an Optimal Sound Augmentation Policy for Environmental Sound Classification with Deep Neural Networks

심층 신경망을 통한 자연 소리 분류를 위한 최적의 데이터 증대 방법 탐색

  • Published : 2020.07.13

Abstract

심층 신경망은 영상 분류, 음성 인식, 그리고 문자 번역 등 다양한 분야에서 효과적인 성능을 보여주고 있다. 신경망의 구조 변화, 신경망 간의 정보 전달, 그리고 학습에 사용되는 데이터 증대 등의 확장된 연구를 통해 성능은 더욱 발전하고 있다. 그 중에서도 데이터 증대는 기존에 수집한 데이터의 변형을 통해 심층 신경망에 더 다양한 데이터를 제공함으로써 더욱 일반화된 신경망을 학습시기키는 것을 목표로 한다. 하지만 기존의 음향 관련 신경망 연구에서는 모델의 학습에 사용되는 데이터 증대 방법의 연구가 영상 처리 분야만큼 다양하게 이루어지지 않았다. 최근 영상 처리 분야의 데이터 증대 연구는 학습에 사용되는 데이터와 모델에 따라 최적의 데이터 증대 방법이 다르다는 것을 실험적으로 보여주었다. 이에 영감을 받아 본 논문은 자연에서 발생하는 음향을 분류하는데 있어서 최적의 데이터 증대 방법을 실험적으로 찾으며, 그 과정을 소개한다. 음향에 잡음 추가, 피치 변경 혹은 스펙트로그램의 일부 제한 등의 데이터 증대 방법을 다양하게 조합하는 실험을 통해 경험적으로 어떤 증대 방법이 효과적인지 탐색했다. 결과적으로 ESC-50 자연 음향 데이터 셋에 최적화된 데이터 증대 방법을 적용함으로써 분류 정확도를 89%로 향상시킬 수 있었다.

Keywords