Development of Land Compensation Cost Estimation Model : The Use of the Construction CALS Data and Linked Open Data

토지 보상비 추정 모델 개발 - 건설CALS데이터와 공공데이터 중심으로

  • Published : 2020.07.15

Abstract

본 연구는 토지 보상비의 추정 모델 개발을 위해서 건설 CALS (Continuous Acquisition & Life-cycle Support) 시스템의 내부데이터와 개별공시지가 및 표준지 공시지가 등의 외부데이터, 그리고 개발된 추정 모델의 고도화를 위한 개별공시가 데이터를 기반으로 생성된 데이터를 활용하였다. 이렇게 수집된 3가지 유형의 데이터를 분석하기 위해서 기존 선형 모델 또는 의사결정나무 (Tree) 기반의 모델상 과적합 오류를 제거할 경우 매우 유용한 알고리즘으로 Decision Tree 기반의 Xgboost 알고리즘을 데이터 분석 방법론으로 토지 보상비 추정 모델 개발에 활용하였다. Xgboost 알고리즘의 고도화를 위해 하이퍼파라미터 튜닝을 적용한 결과, 실제 보상비와 개발된 보상비 추정 모델의 MAPE(Mean Absolute Percentage Error) 범위는 19.5%로 확인하였다.

Keywords