한국컴퓨터정보학회:학술대회논문집 (Proceedings of the Korean Society of Computer Information Conference)
- 한국컴퓨터정보학회 2020년도 제62차 하계학술대회논문집 28권2호
- /
- Pages.359-362
- /
- 2020
설명 문장 생성을 통한 해석 가능한 시각적 질의응답 모델 분석
Interpretable Visual Question Answering via Explain Sentence Generation
- Kim, Danil (Dept. of Computer Science and Engineering, Pohang University of Science and Technology) ;
- Han, Bohyung (Dept. of Electrical and Computer Engineering, Seoul National University)
- 발행 : 2020.07.15
초록
본 연구에서는 설명 문장 생성을 통한 해석 가능한 시각적 질의응답 모델을 설계하고 학습 방법을 제시한다. 설명 문장은 시각적 질의응답 모델이 응답을 예측하는 데에 필요한 이미지 및 질문 정보와 적절한 논리적인 정보의 조합 및 정답 추론 과정이 함의되어 있을 것으로 기대한다. 설명 문장 생성 과정이 포함된 시각적 질의응답의 기본적인 모델을 기반으로 여러 가지 학습방법을 통해 설명 문장 생성 과정과 응답 예측 과정간의 상호관계를 분석한다. 이러한 상호작용을 적극적으로 활용할 수 있는 보다 개선 시각적 질의응답 모델을 제안한다. 또한 학습한 결과를 바탕으로 설명 문장의 특성을 활용하여 시각적 질의응답 추론 과정을 개선함으로써 시각적 질의응답 모델의 발전 방향을 논의한다. 본 실험을 통해서 응답 예측에 적절한 설명 문장을 제시하는 해석 가능한 시각적 질의응답 모델을 제공한다.