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Abstract 

Different scale of information is an important component in computer vision systems. Recently, there are 
considerable researches on utilizing multi-scale information to solve the scale-invariant problems, such as 
GoogLeNet and FPN. In this paper, we introduce the notion of different scale information fusion (DSIF) and show 
that it has a significant effect on the performance of object recognition systems. We analyze the DSIF in several 
architecture designs, and the effect of nonlinear activations, dropout, sub-sampling and skip connections on it. This 
leads to clear suggestions for ways of the DSIF to choose. 

 

1. Introduction 

The importance of analyzing images at different scales 
originates from the nature of images themselves [1]. Scenes 
in the world not only contain many different sized objects, 
but also these objects contain many different sized features. 
Moreover, from the perspective of the viewer objects can be 
at various distances. As a result, any analysis procedure that 
is applied only at a single scale may miss information at 
other scales. The solution is to go through analyses at all 
scales simultaneously.  

Recently, in many deep convolutional neural networks [2] 
studies, combining features of different scales has received 
significant attention, in part because the lower layers features 
have higher resolution, contains more position and local 
detail information, but due to less convolution it has less 
global semantics and more noise. High-level or deep layer 
features have stronger global semantic information, however 
due to the low resolution, vast local information is lost. How 
to represent multi-level information efficiently is one of the 
keys to improving the deep model for classifying objects at 
different scales.  

Image pyramids [1] were heavily used in the era of hand-
crafted features. Image pyramids are scale-invariant in the 

level in the pyramid. Intuitively, this property enables a 
model to detect objects across a large range of scales by 
scanning the model over both positions and pyramid levels. 

Convolution is another basic operation of most image 
processing systems. In a multi-level system, such as 
GoogLeNet [3], they performed convolutions with many 
different sized kernels, ranging from very small to very large 
(1x1, 3x3, 5x5 and 7x7), of which small sized kernels are 
designed to represent local features and global features are 
represented by large sized kernels. 

In general, the purpose of feature fusion is to combine the 

different scale features extracted from the image into one 
high-dimensional feature vector that is more discriminative 
than the input. How to properly and effectively fuse different 
scale features remains a challenge. Specifically, current deep 
models pose two major feature fusion methods: addition and 
concatenation. 

Addition: Parallel strategy [4][5], which combines different 
scales feature vectors into one complex vector. The 
dimension of input feature vector, Xi, is equal to the 
dimension of output Yj, and have the same height and width. 
For 0<= i <N:  

 
where N is the number of scales. 

Concatenation: Series feature fusion [4][5], that different 
scales features are connected directly. Same height and width 
are the prerequisites of Xi, but the dimension of each Xi can 
be different. So that, 

 
where Qj is the dimension of Yj, Pi is the dimension of Xi 

In this paper we aim to study the impact of fusion methods 
on the different scale features, focusing on the architecture of 
inception networks. We conduct extensive experiment on the 
large-scale image dataset (Places 365 standard [6]), and 
empirically, we discover the effect of DSIF. 

The rest of the paper is as follows. In Section 2, the original 
version of inception network is introduced. In Section 3, our 
experimental details and results are showed. Finally, the 
conclusions are given.  

 

2019년 추계학술발표대회 논문집 제26권 제2호 (2019. 11)

- 1004 -



 
 

 
(Figure 1) The basic inception module 

2. Inception network 

In the development of convolutional neural networks (CNNs) 
the Inception network [3] was an important milestone. Prior 
to its inception, most common CNNs just stacked 
convolution layers deeper and deeper, hoping to lead to a 
better performance. While very deep networks are not only 
prone to overfitting, but it also becomes hard to pass gradient 
updates through the entire network. Furthermore, simply 
stacking large convolution operations is computationally 
expensive ork 

and 5x5). Additionally, max pooling is also performed. The 
outputs are concatenated and sent to the next inception 
module. Figure 1 shows the basic inception module.  
 

3. Experiments 

In this section, we introduce the experimental setting and 
declare the performance of DSIF on the Places365 standard 
[6] database. We first describe the dataset and our 
implementation details. Then, we discover the effect of DSIF 
by performing extensive experiments on the large-scale 
dataset. 

The Places 365 standard [6] is a large-scale scene-centric 
benchmark, containing 365 common scene categories. In 
total the dataset includes 1.8 million training images where 
5000 training images per class, and 50 images per category 
for validation. The evaluation criteria of the Places 365 
standard is based on top5 accuracy [7]. 

For training, we employ the mini-batch stochastic gradient 
descent algorithm [8] to optimize network, where the batch 
size is set as 128 and momentum [9] set to 0.9. The learning 
rate [10] is initialized as 0.1 and decreases according to a 
fixed schedule as shown in table 1. For data augmentation 
[11] we only use randomly horizontal flipping. The 
experimental results are shown in Table 2.  

As the result shows that concatenation is more effective and 
achieves a higher accuracy, when Qj<1000, which means 
staking multi-level information all together is not prone to 
have problems with gradient vanishing or exploding. While 
when Qj > 1000, the vanishing/exploding issue is more likely 
to happen. Therefore, addition method that plays the role of 
skipping connections is more appropriate. Finally, using both 
addition and concatenation separately at different depth of 
layers based on the number of neurons is the most effective 
way. 

 
 
 

<Table 1> Learning Rate Schedule 

 
 
 

<Table 2> Results on DISF 

 
 

4. Discussions & Conclusions  

In this paper we have conducted three kinds of DISF 
methods and analyzed the effect of them based on the 
classical architecture inception network. As one of the widely 
recognized CNN models, every version of inception has 
scored tremendous achievements in recent years. The 
concatenation of different sized kernels which is the only 
way they used. However, as shown in the Table 2, when the 
number of neurons exceed 1000, addition achieves better 
accuracy than concatenation. Though, combining of addition 
with concatenation gets the best performance. In the future 
we will explore more available ways to represent multi-level 
information and fusion methods.  
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