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Abstract
In the case of blur processing, it is common to use a tool such as Photoshop to perform 

processing manually. However, it can be considered very efficient if the blur is processed at one 

time in the object detection process. Based on this point, we can use the object detection model to 

blur the objects during the process. The object detection is performed by using the YOLO [3] 

model. If such blur processing is used, it may be additionally applied to streaming data of video or 

image.

1. Introduction

   Object detection algorithms are improved since CNN 

[1]. In terms of accuracy and speed, many algorithms 

developed using deep learning. The goal of object 

detection is to determine whether or not there are any 

instances of the given categories (such as humans, 

cars, bicycles, dogs and cats) in some given image. 

Object detection using Deep Learning can be divided 

into two major directions, 1-stage object detector which 

based on regression/classification and 2-stage object 

detector based on region proposal. There are popular 

object detect algorithms named Faster R-CNN [2], 

YOLO [3], SSD [4 etc]. We will use YOLO among 

object detection models for blur processing. Considering 

the performance of YOLO, the latest version, we used 

YOLO-v3 [6] which has good performance in terms of 

speed and accuracy.

   We will look at representative three models. First, 

after reviewing SSD [4], Faster R-CNN [2], we will 

explore YOLO [3] in more detail. And then, We will 

focus on the performance difference between YOLO-v3 

[6] and existing YOLO, and discuss experimental 

results.

  

2. Related works

   Region proposals detected with the Selective Search 

method were still necessary in the previous model [7], 

[8], which is computationally expensive.

   Faster R-CNN have introduced Region Proposal 

Network (RPN) to directly generate region proposals 

[2], predict bounding boxes and detect objects. The 

Faster Region-Based Convolutional Network (Faster 

R-CNN) is a combination between the RPN and the 

Fast R-CNN model. Overview of Faster R-CNN is in 

Figure 1.

   1) Faster R-CNN: CNN model takes the entire 

image as input and generates a feature map. A 3 x 3 

sized window slides through all feature maps and 

outputs a feature vector linked to two fully regressed 

layers one for box regression and one for box 

classification. The output of the box regression layer is 

4k in size (box's coordinates, height and width) and the 

output size of the boxed classification layer is 2k 

(detecting objects or objects in the "objectness" score 

box) [2]. The k region proposal detected in the sliding 

window is called an anchor. Figure 2 shows detecting 

the anchor boxes for a single 3 x 3 window. When the 

anchor boxes are detected, they are selected by 

applying “objectness” score to keep only the relevant 

boxes. Faster R-CNN uses RPN [2] to avoid the 

Selective Search [5] method, it accelerates the training 

and testing processes, and improve the performances. 

The architecture of RPN is shown in Figure 2.

   2)　SSD (Single Shot Multibox Detecotr): It presents 

an object detection model using a single deep neural 

network combining regional proposals and feature 

extraction. SSD to predict all at once the bounding 
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Figure 1. Overview of Faster R-CNN [6].

Figure 2. The RPN in Faster R-CNN [6]. K predefined 

anchor boxes are convoluted with each sliding window 

to produce fixed-length vectors which are taken by 

classifications and regression layer to obtain 

corresponding outputs.

 Figure 3. The SSD network leveraging feature maps 

from VGG-16 [4].

Figure 4. The architecture of YOLO [2].

boxes and the class probabilities with a end-to-end 

CNN architecture. The model takes an image as input 

which passes through multiple convolutional layers with 

different sizes of filter [4]. Feature maps from 

convolutional layers at different position of the network 

are used to predict the bounding boxes. They are 

processed by a specific convolutional layers with 3 x 3 

filters called extra feature layers to produce a set of 

bounding boxes similar to the anchor boxes of the Fast 

R-CNN [8]. Each box has 4 parameters: the coordinates 

of the center, the width and the height. At the same 

time, it produces a vector of probabilities corresponding 

to the confidence over each class of object. The 

Non-Maximum Suppression method  [3] is also used at 

the end of the SSD model to keep the most relevant 

bounding boxes. The Hard Negative Mining [4] is then 

used because a lot of negative boxes are still predicted. 

It consists in selecting only a subpart of these boxes 

during the training. The boxes are ordered by 

confidence and the top is selected depending on the 

ratio between the negative and the positive which is at 

most 1/3.

   3) YOLO (You Only Look Once) 

   The YOLO is novel approach for end to end object 

detection: instead of re-purposing classification as a 

way to address object detection, YOLO frames detection 

as a regression problem with spatially separated 

bounding boxes and associated class probabilities. Using 

this formulation, a single neural network can be used 

to predict the bounding boxes and class probabilities 

directly from the full image in one step evaluation [3]. 

Since the entire detection pipeline is a single network, 

it can consequently be optimized end-to-end directly on 

detection performance.

   The basic architecture is using a resize step, a 

series of convolution steps and non-max suppression. 

The network predicts multiple bounding boxes in one 

run, as well as the class probabilities for those boxes. 

The overall architecture is presented in Figure 4.

Each bounding box contains 5 elements: (x, y, w, h) 

and a box confidence score. The confidence score 

reflects how likely the box contains an object and how 

accurate is the bounding box. We normalize the 

bounding box width w and height h by the image 

width and height. The x and y are offsets to the 

corresponding cell. Hence, x, y, w and h are all 

between 0 and 1. Each cell has 20 conditional class 

probabilities. The conditional class probability is the 
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Figure 5. Loss of YOLO [2].

Figure 6. Performance on COCO 50 

Benchmark. 

probability that the detected object belongs to a 

particular class. The class confidence score for each 

prediction box is computed as:

class confidence score  = box confidence score x 

conditional class probability

It measures the confidence on both the classification 

and the localization. The loss in YOLO adds three 

different components (localization, confidence and 

classification losses together).

Classification loss at each cell is the squared error of 

the class conditional probabilities for each class. The 

localization loss measures the errors in the predicted 

boundary box locations and sizes. We only count the 

box responsible for detecting the object. 

   YOLO can make duplicate detections for the same 

object. To fix this, YOLO applies non-maximal 

suppression [3] to remove duplications with lower 

confidence. 1) Sort the predictions by the confidence 

scores. 2) Start from the top scores, ignore any current 

prediction if we find any previous predictions that have 

the same class and IoU>0.5 with the current prediction. 

3) Repeat step 2 until all predictions are checked.

3. Result

   We use the YOLO-v3 model for training and 

pre-trained weights for training. YOLO-v3 shows the 

latest performance when compared with the 

performance of the representative models of object 

detection mentioned above [2], [3], [4], [6]. The most 

salient feature of YOLO-v3 is that it makes detections 

at three different scales. The detection is done by 

applying 1 x 1 detection kernels on feature maps of 

three different sizes at three different places in the 

network. The shape of the detection kernel is 1 x 1 x 

(B x (5 + C)). Where B is the number of bounding 

boxes that the cell can predict in the feature map, “5” 

is for the 4 bounding box attributes and one object 

confidence, and C is the number of classes. In YOLO- 

v3 trained on COCO [9], B = 3 and C = 80, so the 

kernel size is 1 x 1 x 255. The feature map produced 

by this kernel has identical height and width of the 

previous feature map, and has detection attributes along 

the depth as described above. 

   Detections at different layers helps address the issue 

of detecting small objects, a frequent complaint with 

YOLO-v2 [5]. The up-sampled layers concatenated with 

the previous layers help preserve the fine grained 

features which help in detecting small objects [10]. 

YOLO-v3, in total uses 9 anchor boxes. Arrange the 

anchors is descending order of a dimension. Assign the 

three biggest anchors for the first scale , the next three 

for the second scale, and the last three for the third.

   For an input image of same size, YOLO-v3 predicts 

more bounding boxes than YOLO-v2. YOLO-v3 

predicts 10x the number of boxes predicted by YOLO- 

v2 [5], [6]. Also, there is a change in loss function. In 

YOLO-v3, localization, confidence and classification 

losses have been replaced by cross-entropy error terms. 

   YOLO-v3 now performs multi-label classification for 

objects detected in images. In YOLO, authors used to 

softmax the class scores and take the class with 

maximum score to be the class of the object contained 

in the bounding box [3]. If an object belongs to one 

class, then it cannot belong to the other. This works 

fine in COCO dataset. Each class score is predicted 

using logistic regression and a threshold is used to 

predict multiple labels for an object. Classes with 

scores higher than this threshold are assigned to the 

box [6]. 

2019년 춘계학술발표대회 논문집 제25권 제1호 (2019. 5)

- 433 -

2019년 춘계학술발표대회 논문집 제26권 제1호 (2019. 5)



2019년 춘계학술발표대회 논문집 제25권 제1호 (2019. 5)

Figure 8. Result of blur processing in image with 

object detecting. 

   YOLO-v3 works equally well with other state of art 

detectors in Figure 6. It is also better than SSD and 

it’s variants.

   After detecting object in image with YOLO-v3, it 

processed blur on the bounding box by simple trick. 

When drawing bounding boxes and labels, we add blur 

by using the gaussian blur in Opencv. There’s no other 

additive time or space for blur the objects. 

   Figure 8 images are the result of YOLO-v3 with 

pretrained weights. We can make multiple blurs on 

image by detection. However, the problem is that when 

a class is overlapped, it cannot know which class has 

been executed when it is blurred. Futhermore, we can 

apply this methods to video. If it improves gradually, it 

will be much more effective and efficient than mosaic 

or blur each image in real time streaming video or on 

a platform such as YouTube. 

4. Conclusion

   For blur processing through object detection, 

representative object detection models are discussed. In 

this paper mainly looked at the YOLO model in detail. 

This paper first explores and experiments with 

emphasis on performing blur processing on objects per 

image. In the future, we can make real time blur 

processing by using this method. Based on this method, 

If we improve the additional details for blur processing 

by the desired class in the image, it is also possible to 

perform real-time image processing on-line.

참고문헌

[1] Li Liu, Wanli Ouyang, Xiaogang Wang, Paul 

Fieguth, Jie Chen, Xinwang Liu, Matti Pietikainen, 

“Deep Learning for Generic Object Detection: A 

Survey” arXiv:1809.02165, 2018. 

[2] S. Ren, K. He, R. Girshick, and J. Sun, “Faster 

R-CNN: Towards Real-Time Object Detection with 

Region Proposal Networks” in NIPS, 2015.

[3] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, 

“You Only Look Once: Unified, Real-Time Object 

Detection” in CVPR, 2016.

[4] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. 

Reed, C.-Y. Fu, and A. C. Berg, “SSD: Single shot 

Multibox Detector” in ECCV, 2016.

[5] J. Redmon and A. Farhadi. “YOLO9000: Better, 

Faster, Stronger” in CVPR, 2017

[6] J. Redmon and A. Farhadi. “YOLOv3: An 

Incremental Improvement” arXiv:1804.02767, 2018.

[7] R. Girshick, J. Donahue, T. Darrell, and J. Malik. 

“Rich feature hierarchies for accurate object detection 

and semantic segmentation” in CVPR, 2014.

[8] R. Girshick, “Fast R-CNN” in ICCV, 2015.

[9] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. 

Perona, D. Ramanan, P. Doll´ar, and C. L. Zitnick, 

“Microsoft COCO: Common Objects in Context” in 

ECCV, 2014.

[10] J. Long, E. Shelhamer, and T. Darrell, “Fully 

Convolutional Networks for Semantic Segmentation” in 

Proc. Comput. Vis. Pattern Recognit., 2015.

2019년 춘계학술발표대회 논문집 제25권 제1호 (2019. 5)

- 434 -

2019년 춘계학술발표대회 논문집 제26권 제1호 (2019. 5)




