
2019년 춘계학술발표대회 논문집 제25권 제1호 (2019. 5)

YOLO를 이용한 이미지 Blur 처리

강동연

한양대학교 컴퓨터 공학과

e-mail:dongykang@gmail.com

Blur the objects in image by YOLO

Dongyeon Kang

Dept of Computer Science, Han-yang University

Abstract
In the case of blur processing, it is common to use a tool such as Photoshop to perform

processing manually. However, it can be considered very efficient if the blur is processed at one

time in the object detection process. Based on this point, we can use the object detection model to

blur the objects during the process. The object detection is performed by using the YOLO [3]

model. If such blur processing is used, it may be additionally applied to streaming data of video or

image.

1. Introduction

 Object detection algorithms are improved since CNN

[1]. In terms of accuracy and speed, many algorithms

developed using deep learning. The goal of object

detection is to determine whether or not there are any

instances of the given categories (such as humans,

cars, bicycles, dogs and cats) in some given image.

Object detection using Deep Learning can be divided

into two major directions, 1-stage object detector which

based on regression/classification and 2-stage object

detector based on region proposal. There are popular

object detect algorithms named Faster R-CNN [2],

YOLO [3], SSD [4 etc]. We will use YOLO among

object detection models for blur processing. Considering

the performance of YOLO, the latest version, we used

YOLO-v3 [6] which has good performance in terms of

speed and accuracy.

 We will look at representative three models. First,

after reviewing SSD [4], Faster R-CNN [2], we will

explore YOLO [3] in more detail. And then, We will

focus on the performance difference between YOLO-v3

[6] and existing YOLO, and discuss experimental

results.

2. Related works

 Region proposals detected with the Selective Search

method were still necessary in the previous model [7],

[8], which is computationally expensive.

 Faster R-CNN have introduced Region Proposal

Network (RPN) to directly generate region proposals

[2], predict bounding boxes and detect objects. The

Faster Region-Based Convolutional Network (Faster

R-CNN) is a combination between the RPN and the

Fast R-CNN model. Overview of Faster R-CNN is in

Figure 1.

 1) Faster R-CNN: CNN model takes the entire

image as input and generates a feature map. A 3 x 3

sized window slides through all feature maps and

outputs a feature vector linked to two fully regressed

layers one for box regression and one for box

classification. The output of the box regression layer is

4k in size (box's coordinates, height and width) and the

output size of the boxed classification layer is 2k

(detecting objects or objects in the "objectness" score

box) [2]. The k region proposal detected in the sliding

window is called an anchor. Figure 2 shows detecting

the anchor boxes for a single 3 x 3 window. When the

anchor boxes are detected, they are selected by

applying “objectness” score to keep only the relevant

boxes. Faster R-CNN uses RPN [2] to avoid the

Selective Search [5] method, it accelerates the training

and testing processes, and improve the performances.

The architecture of RPN is shown in Figure 2.

 2)　SSD (Single Shot Multibox Detecotr): It presents

an object detection model using a single deep neural

network combining regional proposals and feature

extraction. SSD to predict all at once the bounding

2019년 춘계학술발표대회 논문집 제25권 제1호 (2019. 5)

- 431 -

2019년 춘계학술발표대회 논문집 제26권 제1호 (2019. 5)

2019년 춘계학술발표대회 논문집 제25권 제1호 (2019. 5)

Figure 1. Overview of Faster R-CNN [6].

Figure 2. The RPN in Faster R-CNN [6]. K predefined

anchor boxes are convoluted with each sliding window

to produce fixed-length vectors which are taken by

classifications and regression layer to obtain

corresponding outputs.

 Figure 3. The SSD network leveraging feature maps

from VGG-16 [4].

Figure 4. The architecture of YOLO [2].

boxes and the class probabilities with a end-to-end

CNN architecture. The model takes an image as input

which passes through multiple convolutional layers with

different sizes of filter [4]. Feature maps from

convolutional layers at different position of the network

are used to predict the bounding boxes. They are

processed by a specific convolutional layers with 3 x 3

filters called extra feature layers to produce a set of

bounding boxes similar to the anchor boxes of the Fast

R-CNN [8]. Each box has 4 parameters: the coordinates

of the center, the width and the height. At the same

time, it produces a vector of probabilities corresponding

to the confidence over each class of object. The

Non-Maximum Suppression method [3] is also used at

the end of the SSD model to keep the most relevant

bounding boxes. The Hard Negative Mining [4] is then

used because a lot of negative boxes are still predicted.

It consists in selecting only a subpart of these boxes

during the training. The boxes are ordered by

confidence and the top is selected depending on the

ratio between the negative and the positive which is at

most 1/3.

 3) YOLO (You Only Look Once)

 The YOLO is novel approach for end to end object

detection: instead of re-purposing classification as a

way to address object detection, YOLO frames detection

as a regression problem with spatially separated

bounding boxes and associated class probabilities. Using

this formulation, a single neural network can be used

to predict the bounding boxes and class probabilities

directly from the full image in one step evaluation [3].

Since the entire detection pipeline is a single network,

it can consequently be optimized end-to-end directly on

detection performance.

 The basic architecture is using a resize step, a

series of convolution steps and non-max suppression.

The network predicts multiple bounding boxes in one

run, as well as the class probabilities for those boxes.

The overall architecture is presented in Figure 4.

Each bounding box contains 5 elements: (x, y, w, h)

and a box confidence score. The confidence score

reflects how likely the box contains an object and how

accurate is the bounding box. We normalize the

bounding box width w and height h by the image

width and height. The x and y are offsets to the

corresponding cell. Hence, x, y, w and h are all

between 0 and 1. Each cell has 20 conditional class

probabilities. The conditional class probability is the

2019년 춘계학술발표대회 논문집 제25권 제1호 (2019. 5)

- 432 -

2019년 춘계학술발표대회 논문집 제26권 제1호 (2019. 5)

2019년 춘계학술발표대회 논문집 제25권 제1호 (2019. 5)

Figure 5. Loss of YOLO [2].

Figure 6. Performance on COCO 50

Benchmark.

probability that the detected object belongs to a

particular class. The class confidence score for each

prediction box is computed as:

class confidence score = box confidence score x

conditional class probability

It measures the confidence on both the classification

and the localization. The loss in YOLO adds three

different components (localization, confidence and

classification losses together).

Classification loss at each cell is the squared error of

the class conditional probabilities for each class. The

localization loss measures the errors in the predicted

boundary box locations and sizes. We only count the

box responsible for detecting the object.

 YOLO can make duplicate detections for the same

object. To fix this, YOLO applies non-maximal

suppression [3] to remove duplications with lower

confidence. 1) Sort the predictions by the confidence

scores. 2) Start from the top scores, ignore any current

prediction if we find any previous predictions that have

the same class and IoU>0.5 with the current prediction.

3) Repeat step 2 until all predictions are checked.

3. Result

 We use the YOLO-v3 model for training and

pre-trained weights for training. YOLO-v3 shows the

latest performance when compared with the

performance of the representative models of object

detection mentioned above [2], [3], [4], [6]. The most

salient feature of YOLO-v3 is that it makes detections

at three different scales. The detection is done by

applying 1 x 1 detection kernels on feature maps of

three different sizes at three different places in the

network. The shape of the detection kernel is 1 x 1 x

(B x (5 + C)). Where B is the number of bounding

boxes that the cell can predict in the feature map, “5”

is for the 4 bounding box attributes and one object

confidence, and C is the number of classes. In YOLO-

v3 trained on COCO [9], B = 3 and C = 80, so the

kernel size is 1 x 1 x 255. The feature map produced

by this kernel has identical height and width of the

previous feature map, and has detection attributes along

the depth as described above.

 Detections at different layers helps address the issue

of detecting small objects, a frequent complaint with

YOLO-v2 [5]. The up-sampled layers concatenated with

the previous layers help preserve the fine grained

features which help in detecting small objects [10].

YOLO-v3, in total uses 9 anchor boxes. Arrange the

anchors is descending order of a dimension. Assign the

three biggest anchors for the first scale , the next three

for the second scale, and the last three for the third.

 For an input image of same size, YOLO-v3 predicts

more bounding boxes than YOLO-v2. YOLO-v3

predicts 10x the number of boxes predicted by YOLO-

v2 [5], [6]. Also, there is a change in loss function. In

YOLO-v3, localization, confidence and classification

losses have been replaced by cross-entropy error terms.

 YOLO-v3 now performs multi-label classification for

objects detected in images. In YOLO, authors used to

softmax the class scores and take the class with

maximum score to be the class of the object contained

in the bounding box [3]. If an object belongs to one

class, then it cannot belong to the other. This works

fine in COCO dataset. Each class score is predicted

using logistic regression and a threshold is used to

predict multiple labels for an object. Classes with

scores higher than this threshold are assigned to the

box [6].

2019년 춘계학술발표대회 논문집 제25권 제1호 (2019. 5)

- 433 -

2019년 춘계학술발표대회 논문집 제26권 제1호 (2019. 5)

2019년 춘계학술발표대회 논문집 제25권 제1호 (2019. 5)

Figure 8. Result of blur processing in image with

object detecting.

 YOLO-v3 works equally well with other state of art

detectors in Figure 6. It is also better than SSD and

it’s variants.

 After detecting object in image with YOLO-v3, it

processed blur on the bounding box by simple trick.

When drawing bounding boxes and labels, we add blur

by using the gaussian blur in Opencv. There’s no other

additive time or space for blur the objects.

 Figure 8 images are the result of YOLO-v3 with

pretrained weights. We can make multiple blurs on

image by detection. However, the problem is that when

a class is overlapped, it cannot know which class has

been executed when it is blurred. Futhermore, we can

apply this methods to video. If it improves gradually, it

will be much more effective and efficient than mosaic

or blur each image in real time streaming video or on

a platform such as YouTube.

4. Conclusion

 For blur processing through object detection,

representative object detection models are discussed. In

this paper mainly looked at the YOLO model in detail.

This paper first explores and experiments with

emphasis on performing blur processing on objects per

image. In the future, we can make real time blur

processing by using this method. Based on this method,

If we improve the additional details for blur processing

by the desired class in the image, it is also possible to

perform real-time image processing on-line.

참고문헌

[1] Li Liu, Wanli Ouyang, Xiaogang Wang, Paul

Fieguth, Jie Chen, Xinwang Liu, Matti Pietikainen,

“Deep Learning for Generic Object Detection: A

Survey” arXiv:1809.02165, 2018.

[2] S. Ren, K. He, R. Girshick, and J. Sun, “Faster

R-CNN: Towards Real-Time Object Detection with

Region Proposal Networks” in NIPS, 2015.

[3] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi,

“You Only Look Once: Unified, Real-Time Object

Detection” in CVPR, 2016.

[4] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S.

Reed, C.-Y. Fu, and A. C. Berg, “SSD: Single shot

Multibox Detector” in ECCV, 2016.

[5] J. Redmon and A. Farhadi. “YOLO9000: Better,

Faster, Stronger” in CVPR, 2017

[6] J. Redmon and A. Farhadi. “YOLOv3: An

Incremental Improvement” arXiv:1804.02767, 2018.

[7] R. Girshick, J. Donahue, T. Darrell, and J. Malik.

“Rich feature hierarchies for accurate object detection

and semantic segmentation” in CVPR, 2014.

[8] R. Girshick, “Fast R-CNN” in ICCV, 2015.

[9] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P.

Perona, D. Ramanan, P. Doll´ar, and C. L. Zitnick,

“Microsoft COCO: Common Objects in Context” in

ECCV, 2014.

[10] J. Long, E. Shelhamer, and T. Darrell, “Fully

Convolutional Networks for Semantic Segmentation” in

Proc. Comput. Vis. Pattern Recognit., 2015.

2019년 춘계학술발표대회 논문집 제25권 제1호 (2019. 5)

- 434 -

2019년 춘계학술발표대회 논문집 제26권 제1호 (2019. 5)

