Acknowledgement
Supported by : 한국에너지기술평가원(KETEP)
배터리의 상태를 추정하기 위해 전압과 전류 데이터는 사용자가 센서를 통해 얻을 수 있는 정보이며, 이때 노이즈 성분이 포함된 전압 및 전류 데이터는 배터리의 상태 추정을 할 때 정확도를 크게 감소시킬 수 있다. 기존의 확장 칼만필터(EKF, Extended Kalman Filter)를 사용하여 노이즈 성분이 포함된 데이터를 통해 배터리의 상태를 추정했을 때는 노이즈의 영향으로 인해 추정 정확도가 떨어진다. 본 논문은 적응형 칼만 필터(AKF, Adaptive Kalman Filter)를 사용하여 노이즈 분산값을 업데이트 해줌으로써 SOC추정 성능을 향상시켰다. 실험 및 배터리의 모델링은 21700 NMC 고용량 배터리를 사용하였으며, 배터리의 전압에 임의의 노이즈 성분을 추가하여 배터리의 SOC를 추정 정확도를 검증 하였다.
Supported by : 한국에너지기술평가원(KETEP)