CNN 을 이용한 단일영상 고해상도 복원 및 수용영역 확장을 통한 성능 향상

  • Park, Karam (Seoul National University Electrical Computer Engineering, INMC) ;
  • Cho, Nam Ik (Seoul National University Electrical Computer Engineering, INMC)
  • 박가람 (서울대학교 전기공학부 뉴미디어통신연구소) ;
  • 조남익 (서울대학교 전기공학부 뉴미디어통신연구소)
  • Published : 2019.11.29

Abstract

합성곱 신경망의 성능이 증가하면서 다양한 영상 처리 문제를 해결하기 위해 합성곱 신경망을 적용한 시도들이 증가하고 있다. 고해상도 복원 문제도 그 중 하나였으며, 보다 높은 성능을 얻기 위해 주로 신경망의 깊이를 깊게 하는 시도들이 있었다. 본 논문에서는 고해상도 복원 작업을 위한 합성곱 신경망의 성능 향상을 위해 깊이를 증가시키는 접근법이 아닌 수용영역을 확장시키는 접근법을 시도하였다. 논문에서 제시한 모델은 신경망 내부에 두 개의 브랜치를 두어, 하나의 브랜치는 Dilated Convolution 을 이용해 수용영역을 확장하는데 사용되며, 다른 하나는 이 브랜치를 통해 나온 feature 를 가공하는데 사용된다. 기본 모델은 EDSR 을 사용하였으며, 최종적으로 4.79M 의 파라미터로 평균 32.46dB 의 PSNR 을 보여주었다. 하지만 모델의 구조가 복잡하여 깊이를 늘이는 접근법을 적용하기 어렵다는 한계점이 있다.

Keywords