Classification Learning Data using Maximum Entropy Theory

최대 엔트로피 이론을 이용한 학습 데이터 분류

  • Kim, Min-Woo (Dept. of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Kim, Dong-Hyun (Dept. of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Lee, Byung-Jun (Dept. of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Kim, Kyung-Tae (Dept. of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Youn, Hee-Yong (Dept. of Software, Sungkyunkwan University)
  • 김민우 (성균관대학교 정보통신대학 전자전기컴퓨터공학과) ;
  • 김동현 (성균관대학교 정보통신대학 전자전기컴퓨터공학과) ;
  • 이병준 (성균관대학교 정보통신대학 전자전기컴퓨터공학과) ;
  • 김경태 (성균관대학교 정보통신대학 전자전기컴퓨터공학과) ;
  • 윤희용 (성균관대학교 소프트웨어대학 소프트웨어학과)
  • Published : 2018.07.13

Abstract

빅 데이터 활용의 증가로 인해 효율적으로 데이터를 분류하는 것은 머신러닝의 주요 과제이다. 제한적인 자원을 가지고 이에 맞는 처리능력을 갖기 위해서는 단일 기기의 자원 관리능력을 향상시키는 방향의 연구가 필요하다. 본 논문에서는 머신러닝을 위한 학습 데이터를 최대 엔트로피 이론을 적용시켜 효과적으로 분류하는 방법을 제안한다. 최대 엔트로피에 대한 간단한 설명과 최대 엔트로피 이론을 적용시키기 위한 간단한 사전 작업들의 방향 등에 대한 설명을 토대로 기술하였다. 또한 본 연구를 통해 얻게 된 문제점들과 향후 연구에 필요한 피드백을 갖는다.

Keywords