Global distribution of far-ultraviolet emission from the highly ionized gas in the Milky Way

  • Published : 2018.05.08

Abstract

One of the keys to interpreting the characteristics and evolution of interstellar medium in the Milky Way is to understand the distribution of hot gas ($10^5-10^6K$). Gases in this phase are difficult to observe because they are in low density and lack of easily observable tracers. Hot gases are observed mainly in the emission of the FUV ($912-1800{\AA}$), EUV ($80-912{\AA}$), and X-rays (T> $10^6K$) of which attenuation is very high. Of these, FUV emission lines originated from high-stage ions such as O VI and C IV can be the most effective tracers of hot gases. To determine the spatial distribution of O VI and C IV emissions, we have analyzed the spectra obtained from FIMS (Far-ultraviolet IMaging Spectrograph), which covers about 80 percent of the sky. The hot gas volume filling factor, which varies widely from 0.1 to 0.9 depending on the supernova explosion frequency and the evolution model, has been calculated from the O VI and C IV maps. The hot gas generation models has been verified from the global distribution of O VI and C IV emissions, and a new complementary model has been proposed in this study.

Keywords