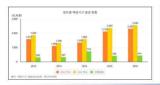
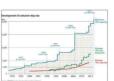
시뮬레이션 데이터 기반 횡경사 각도 예측 방법 연구

* 윤동협·박충환*·임남균**


*. * 중소조선연구원. **목포해양대학교 항해학부 교수


요 약: 선박의 대형화, 고속화 및 선종의 다양화는 운송수단 중 해양 운송수단의 비중을 크게 증가시켰으나, 동시에 선박사고의 발생도 같이 증가되었다. 여객선의 경우 인명의 피해가 크게 발생하기 때문에 선박사고를 예방하기 위한 방법들이 논의되어 지고 있다. 본 연구에서는 여객선의 횡경사 각도를 바탕으로 전복의 위험까지 가게 되는 시간을 예측하여 위험시간에 도달하기 전에 인명을 대피할 수 있는 기초 자료를 제공하고자 하였다. 특정 시나리오를 설정하여, MOSES를 이용한 시뮬레이션을 수행하였으며 선형방정식을 이용하여 시뮬레이션 결과와 비교하였다.

핵심용어 : 횡경사 각도, 위험시간, 시뮬레이션, MOSES

Introduction

- 선박의 대형화 고속화 및 선종의 다양화는 운송수단 중 해양 운송수단의 비율을 크게 증가 시킴
- 선박사고의 발생은 생명과 재산의 손실뿐만 아니라 환경재해까지 일으키기 때문 에 막대한 경제적 환경적인 영향을 미치게 됨

중소조선연구원

Introduction

중소조선연구원

Literature Survey

선체의 손상 침수부위를 가정하여 6자유도 선체운동 및 3차원 파랑하중 해석을 수행

- "Motion studies of a vessel with water on deck"
- "Investigation into the effects of shallow water on deck in ship motion"
- "Study of damaged ship motions taking into account floodwater dynamics"

수조실험을 통하여 대칭 손상의 경우 동작 응답에 영향을 미치며 선박의 고유 진동수를 약간 증 가시키는것을 밝힘

"Final report and recommendations to the 23rt ITTC"

구획의 범람으로 인하여 선박의 운동특성을 시간 영역(Time domain)에서의 연구

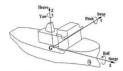
"Time domain modelling of the transient asymmetric flooding of ro-ro ships"

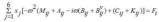
Research Purpose

- 횡경사 각도를 바탕, 전복의 위험까지 가게 되는 시간을 예측
- 위험시간에 도달하기 전 인명을 대피할 수 있는 기초 자료로 제공
- 전제조건
 - ✓ 선체의 손상이 발생하였을 때, 선박이 기울어져 손상안정성을 찾는 조건이 아니 횟경사가 계속 발생한

RMS 중소조선연구원

등을 중소조선연구원

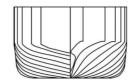

[†] 교신저자 : 정회원, dhyoun@rims.re.kr


Research Method

- Theory and Numerical Method

Equations of ship motion

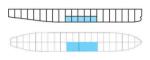
- 유체 및 선체운동에 대한 수학적 설명을 위하여 고정좌표계를 사용
- 회전 중심을 도입, 선체 움직임은 병진 좌표계와 관련하여 기술
- 파고와 급경사는 선형파 이론을 사용하기 위해 작다고 가정
- 유체는 비압축성, 비점성으로 가정
- 유동장은 Velocity Potential로 표현, 라플라스 방정식 만족


 B_{ij}^{v} : Viscous damping matrix C_{ij} : Hydrostatic restoring K_{ij} : External mooring stiffness matrix

Research Method

- Theory and Numerical Method -

Numerical Model (Reference Ro-Roship)


Dimensions	Unit	Value
Displacement, Δ	ton	17268.0
Length between perpendiculars, Lpp	m	170.00
Breadth, B	m	27.80
Depth to the main deck, D _{md}	m	9.40
Depth to the upper deck, D _{ud}	m:	17.78
Draught, T	m	6.25
Metacentric height, GM	m	2.63
Roll natural periods, T _s	s	13.00

RM의 중소조선연구원

Research Method

- Theory and Numerical Method

침수구역 표시

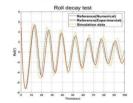
Measurement	Unit	Value
Position of wrecked hole	m	80, 11, 2
Size of wrecked hole(diameter)	m	0.2
Type of wrecked hole	ži.	Circle
Position of connect hole	m	78.155, 8, 5
Size of connect hole(diameter)	m	0.2

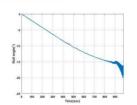
Research Method

- Theory and Numerical Method -

Time domain analysis

Number	Wave height (m)	Wind speed (m/s)	Characteristics
0	0	0.7717	Calm(glassy)
1	0 - 0.1	2.5722	Calm(rippled)
2	0.1 - 0.5	4.3728	Smooth(wavelets)
3	0.5 - 1.25	6.945	Slight
4	1.25 - 25.	9.774	Moderate
5	2.5 - 4	12.6039	Rough
6	4 - 6	19.2917	Very rough
7	6 – 9	26.4939	High
8	9 – 14	30.6094	Very high
9	Over 14	32.9244	Phenomenal


$$S_B(\omega) = \frac{A}{\omega^5} \exp(\frac{-B}{\omega^4})$$


$$A = 172.75 \frac{H_{char}^2}{T^4}, B = \frac{691}{T^4}$$

※ 중소조선연구원

Numerical Result

Roll decay test를 수행하여 참조문한의 실험적 데이터와 수치해석 데이터 그리고 본 연구에서 수행한 수치해석의 유사성을 평가하였으며 수치해석의 경우 12.9조를 나타내고 있어 거의 유사함

시간영역의 해석은 선박의 손상이 일어난 경우에 대해서 특정 횡경사 각도까지 걸리는 시간 을 수치해석으로 수행 -> 비선형적으로 증가

RMS 중소조선연구원

Conclusion

- 여객선의 횡경사 각도를 바탕으로 전복의 위험까지 가게 되는 시간을 예측하기 위한 초기 연구로 수행
- 참조된 Ro-Ro ship을 대상으로 시뮬레이션을 수행함. 파공의 조건 및 해상의 조건을 두어 시간영역으로 해석한 결과 횡경사 각도의 경우 초기에는 천천히 증가, 특정시점이 지난 이 후부터 급격한 횡경사 각도가 발생
- 횡경사 예측방법을 통하여 특정 횡경사 각도까지 걸리는 시간에 대해서 선형적으로 예측
- 시뮬레이션 결과와 같이 횡경사 발생 후 특정 시간 이후 급격하게 발생, 비선형에 관한 유도식을 도출 필요

교육 중소조선연구원

Acknowledgement

본 연구는 해양수산부의 "선박 및 인명 대피 지원 기술 개발" 사업의 지원으로 수행되었습니다. 이에 감사드립니다.