영구자석 동기전동기 센서리스 구동 시스템의 구동 재개 방법

이영재^{*}, 서동우^{*}, 박영수^{*}, 이교범^{*} 아주대학교^{*}

Restarting Method for PMSM Sensorless Drive Systems

Young Jae Lee^{*}, Dong-Woo Seo^{*}, Yeongsu Bak^{*}, Kyo-Beum Lee^{*} Ajou University^{*}

ABSTRACT

본 논문은 영구자석 동기전동기(PMSM) 센서리스 구동 시스 템의 구동 재개 방법을 제안한다. PMSM의 센서리스 구동 시 스템에서는 일반적으로 전동기의 역기전력을 기반으로 회전자 의 속도와 위치를 추정한다. 하지만 PMSM이 회전 중인 상태 에서 인버터의 동작이 중단된 경우에 구동을 재개하기 위해서 는 회전자의 초기 속도 및 위치 정보가 필요하다. 따라서 본 논문에서는 인버터의 영전압 벡터를 인가하여 발생된 전류를 이용해 회전자의 초기 속도 및 위치 정보를 추정하는 PMSM 센서리스 구동 시스템의 구동 재개 방법을 제안한다. 제안하는 방법의 타당성은 시뮬레이션을 통해 검증한다.

1. 서 론

영구자석 동기전동기(PMSM)는 소형, 경량화, 고효율 등의 장점을 가지므로 다양한 전동기 구동 분야에 이용된다^[1]. PMSM의 벡터 제어를 위해서는 회전자의 위치 정보가 필요하 며, 이는 엔코더나 레졸버와 같은 위치 검출 센서를 통해 얻는 다. 하지만 위치 검출 센서는 시스템의 부피를 증가시키며, 유 지보수가 어렵고, 노이즈와 외란에 취약한 단점이 있기 때문에 센서를 사용하지 않고 전동기를 구동하는 센서리스 제어 방법 이 연구되었다. 일반적으로 센서리스 제어 방법은 고주파 주입 방법과 PMSM의 확장 역기전력(extended-electromotive force, EEMF)을 이용한 방법이 주로 이용된다^[2].

PMSM 센서리스 구동 시스템에서는 엔코더나 레졸버와 같 은 위치 검출 센서가 사용되지 않는다. 따라서, 인버터의 동작 이 중단된 경우에 회전자의 초기 속도 및 위치 정보를 검출할 수 없으므로 PMSM의 구동 재개가 불가능하다. 또한. 오차 성 분을 포함하는 회전자의 초기 속도 및 위치 정보를 사용하는 경우에는 PMSM 역기전력에 의한 전류의 왜곡이 발생되어 PMSM의 정확한 제어가 불가능하다^[3]. 따라서 PMSM 센서리 스 구동 시스템에서 인버터의 동작이 중단된 경우에 구동을 재 개하기 위한 추가적인 방법이 필요하다.

본 논문에서는 EEMF 기반의 센서리스 제어 방법을 이용하는 PMSM 센서리스 구동 시스템의 구동 재개 방법을 제안한다. 인버터의 동작이 중단된 경우, 영전압 벡터를 인가하여 발생되는 전류를 통해 PMSM의 회전자의 초기 속도 및 위치 정보를 추정한다. 제안한 구동 재개 방법의 타당성은 PSIM 시뮬레이션을 통해 검증하였다.

2. EEMF 센서리스 제어

2.1 PMSM 모델링 *d-o*축으로 모델링된 PMSM 전압 방정식은 식 (1)과 같다.

$$\begin{bmatrix} V_d \\ V_q \end{bmatrix} = \begin{bmatrix} R_s + pL_d & -\omega L_q \\ \omega L_d & R_s + pL_q \end{bmatrix} \begin{bmatrix} I_d \\ I_q \end{bmatrix} + \begin{bmatrix} 0 \\ \omega \phi_f \end{bmatrix}$$
(1)

식 (1)에서 d-q축으로 전개된 전압 방정식을 임의로 정의한 $\gamma-\delta$ 축으로 변환하면, PMSM 전압 방정식은 식 (2)와 같다. 여 기서, e_{γ} 와 e_{δ} 는 PMSM의 역기전력을 나타내며, 이는 EEMF 의 값 E_{cemt} 의 성분을 포함한 수식으로 식 (3)과 같이 표현된 다.

$$\begin{bmatrix} V_{\gamma} \\ V_{\delta} \end{bmatrix} = \begin{bmatrix} R_s + pL_d & -\omega L_q \\ \omega L_d & R_s + pL_q \end{bmatrix} \begin{bmatrix} I_d \\ I_q \end{bmatrix} + \begin{bmatrix} e_{\gamma} \\ e_{\delta} \end{bmatrix}$$
(2)

2.2 역기전력 추정

그림 1은 \hat{e}_{γ} 추정을 위한 최소차원 관측기의 블록도를 나타 낸다. 최소차원 관측기를 통해 e_{γ} 의 추정값 \hat{e}_{γ} 을 구할 수 있으 며, g_{γ} 은 최소차원 관측기의 이득이다. e_{δ} 의 추정값 \hat{e}_{δ} 또한 \hat{e}_{γ} 과 같은 방법으로 추정할 수 있다.

그림 1 \hat{e}_{γ} 추정을 위한 최소차원 관측기의 블록도 Fig. 1 Block diagram of least-order observer for estimating \hat{e}_{γ}

그림 2 회전자의 위치 제어 블록도 Fig. 2 Control block diagram of rotator position

식 (3)에서 추정 각속도 $\hat{\omega}$ 이 실제 각속도 ω 를 정확히 추종 하여 오차가 무시할 수 있을 정도로 작아지면, 역기전력 추정 값은 식 (4)와 같이 표현할 수 있다.

$$\begin{bmatrix} \hat{e}_{\gamma} \\ \hat{e}_{\delta} \end{bmatrix} = E_{eemf} \begin{bmatrix} -\sin\hat{\theta} \\ \cos\hat{\theta} \end{bmatrix}$$
(4)

결과적으로, *d-q*축과 γ-δ축의 차이인 θ은 식 (5)와 같이 나타낼 수 있다.

$$\hat{\theta} = \tan^{-1}\left(-\frac{\hat{e}_{\gamma}}{\hat{e}_{\lambda}}\right) \tag{5}$$

2.3 센서리스 제어

그림 2는 회전자 위치 제어 블록도를 나타낸다. 각속도를 적 분하여 얻은 회전자의 위치와 추정한 회전자 위치의 오차를 PI 제어기를 통해 0으로 제어한다.

3. 재기동 방법

3.1 회전자 초기 속도 추정 방법

PMSM 센서리스 구동 시스템에서 인버터의 동작이 중단된 경우에 영전압 벡터를 인가하면, PMSM의 역기전력에 의해 단 락 전류가 발생된다. 이러한 단락 전류는 회전자의 속도 및 위 치 정보를 포함하고 있으므로 이를 통해 PMSM의 구동 재개 를 위한 회전자의 초기 속도 및 위치 정보를 추정할 수 있다. 본 논문에서는 두 번의 영전압 벡터를 인가하여 발생된 단락 전류를 통해 회전자의 초기 속도 및 위치 정보를 추정하고, 이 를 PMSM 센서리스 구동 시스템의 구동 재개를 위해 사용한 다. 인버터의 영전압 벡터를 인가하는 경우에 PMSM의 전압 방정식은 식 (6)과 같으며, q 축 고정자 권선의 시정수 L_q/R_s 가 샘플링 주파수 T_s보다 매우 큰 경우에 R_s는 0으로 근사화 된다.

$$\begin{bmatrix} 0\\0 \end{bmatrix} = \begin{bmatrix} pL_d & -\omega L_q\\\omega L_d & pL_q \end{bmatrix} \begin{bmatrix} I_d\\I_q \end{bmatrix} + \begin{bmatrix} 0\\\omega\phi_f \end{bmatrix}$$
(6)

여기서, ω 가 일정하고 초기 전류가 0이라고 가정하면, 식 (6)의 I_d 와 I_q 는 라플라스 변환을 사용하여 식 (7)과 같이 단락 전류 I_{SC} 로 표현이 가능하다.

$$I_{SC} = \begin{bmatrix} I_d \\ I_q \end{bmatrix} = \begin{bmatrix} -\frac{\phi_f}{L_d} (1 - \cos\omega T_s) \\ -\frac{\phi_f}{L_q} \omega T_s \end{bmatrix}$$
(7)

그림 3 (a) 첫 번째 및 (b) 두 번째 영전압 벡터에 의해 발 생된 단락 전류 벡터 Fig. 3 Short-circuit current vectors generated by (a) first and (b) second zero vector

PMSM 센서리스 구동 시스템에서 인버터의 첫 번째 영전압 벡터가 제어 주기 *T_s*동안 인가되는 경우에 3상 단락전류(*i_s*, *i_h*, *i*₀가 발생되며, 정지 좌표계 α-β축 좌표 변환을 통해 *i_α* 및 *i_β*를 얻는다. 이러한 단락 전류를 이용하여 식 (8)과 같이 회전 자의 초기 위치를 추정할 수 있다. 또한, 첫 번째 영전압 벡터 가 인가되어 발생된 단락 전류가 0으로 감소될 때까지의 충분 한 시간이 지난 후, 두 번째 영전압 벡터를 인가하여 θ₂를 추 정할 수 있다.

$$\theta_1 = \tan^{-1} \left(\frac{i_\beta}{i_\alpha} \right) \tag{8}$$

그림 3의 (a)와 (b)는 각각 첫 번째와 두 번째 영전압 벡터 에 의해 발생된 단락 전류 벡터 *I_{SCI}* 및 *I_{SC2}를* 나타낸다. 여기 서, 단락 전류 벡터와 *a*축 사이의 위상각은 각각 θ_1 과 θ_2 , 동 기 좌표계 *d*-축과 *a*축 사이의 위상각은 θ_1^* 와 θ_2^* , 단락 전류 벡 터와 *d*-축 사이의 위상각은 θ_0 로 표현한다. 그림 3에서 단락 전류 벡터가 *d*-*q*축의 회전 속도와 같은 속도로 회전하면 *I_{SCI}* 과 *I_{SC2}의 차이인* $\theta_2 - \theta_1 \in \theta_2^* - \theta_1^*$ 와 동일하며, 회전자의 초기 속도는 식 (9)와 같이 계산된다.

$$\omega_e = \frac{\theta_1 - \theta_2}{T_s + T_{1-2}} \tag{9}$$

3.2 회전자 초기 위치 추정 방법

PMSM 센서리스 구동 시스템에서 인버터의 두 번째 영전압 벡터에 의해 발생된 단락 전류 벡터를 통해 회전자의 초기 위 치는 식 (10)과 같이 계산된다.

표 1 시뮬레이션 파라미터 Table 1 Simulation Parameters

정격 출력	11 kW	정격 속도	1800 rpm
고정자 저항	0.349 Ω	직류단 전압	600 V
d-축 인덕턴스	0.01317 H	q-축 인덕턴스	0.01560 H
극 수	6	쇄교 자속	0.9218 Wb
관성 모멘트	0.00666 kgm^2	제어 주기	100 µs

$$\boldsymbol{\theta}_{e}=\boldsymbol{\theta}_{2}-\boldsymbol{\theta}_{0}$$

또한, θ_2 는 식 (8)을 통해 계산되며, I_{SC2} 와 d-축 사이의 위 상각인 θ_0 는 식 (7)를 이용하여 식 (11)과 같이 근사화 할 수 있다.

(10)

$$\theta_{0} \simeq \tan^{-1} \left(\frac{I_{q}}{I_{d}} \right) = \tan^{-1} \left(\frac{-\frac{\phi_{f}}{L_{q}} \sin \omega_{e} T_{s}}{-\frac{\phi_{f}}{L_{d}} (1 - \cos \omega_{e} T_{s})} \right)$$
(11)
$$= \tan^{-1} \left(\frac{L_{d} \sin \omega_{e} T_{s}}{L_{q} (1 - \cos \omega_{e} T_{s})} \right)$$

결과적으로, 인버터의 영전압 벡터를 인가하여 발생된 단락 전류 벡터를 통해 회전자의 초기 속도 및 위치 정보를 추정할 수 있으며, 이는 PMSM 센서리스 구동 시스템의 구동 재개를 위해 사용된다.

4. 시뮬레이션 결과

PSIM 시뮬레이션을 통해 제안하는 PMSM 센서리스 구동 시스템의 구동 재개 방법의 타당성을 검증하였다. 시뮬레이션 파라미터는 표 1과 같다.

Fig. 5 Expanded waveforms of inverter flag and 3-phase currents

그림 4는 PMSM 센서리스 구동 시스템에서 인버터의 동작 이 중단된 경우에 제안하는 구동 재개 방법을 이용한 시뮬레이 션 결과를 나타낸다. PMSM의 속도(ω_{est})와 회전자의 위치 정 보(θ_{est})는 EEMF 기반의 센서리스 제어를 통해 추정되며, ω_{est} 는 1000 rpm으로 제어된다. 또한, Inverter Flag는 인버터의 동 작 유무를 나타내며, 이 값이 0이 되는 경우에는 인버터의 동 작이 중단된다. 그림 5는 Inverter Flag와 3상 전류를 확대한 파형을 나타낸다. 0.6 초에 인버터의 동작이 중단되며, 0.7 초에 제안하는 구동 재개 방법이 사용된다. 즉, 0.7 초에 영전압 벡 터가 제어 주기 T_s 동안 인가되며, 발생된 단락 전류가 0이 될 때까지의 충분한 시간인 5 T_s 이후에 다시 영전압 벡터를 인가 한다. 영전압 벡터를 인가하여 발생된 단락 전류 벡터를 이용 하여 회전자의 초기 속도(ω_{rst}) 및 위치 정보(θ_{rst})를 추정하며, 이를 EEMF 센서리스 제어의 전향보상 성분에 적용하여 PMSM 센서리스 구동 시스템의 구동 재개를 수행한다.

5. 결 론

본 논문은 PMSM 센서리스 구동 시스템에서 인버터의 동작 이 중단된 경우의 구동 재개 방법을 제안하였다. 제안하는 구 동 재개 방법은 인버터의 영전압 벡터를 이용하여 발생된 단락 전류 벡터를 통해 회전자의 초기 속도 및 위치 정보를 추정한 다. 또한, 추정된 정보를 센서리스 제어의 전향보상 성분에 적 용하여 PMSM 센서리스 구동 시스템의 구동 재개를 수행한다. 제안하는 방법의 타당성은 시뮬레이션을 통해 검증하였다.

참 고 문 헌

- D. Y. Han, Y. Cho, and K.-B. Lee, "Simple sensorless control of interior permanent magnet synchronous motor using PLL based on extended EMF," J. Electr. Eng. Technol., vol. 12, no. 2, pp.711 – 717, Mar. 2017.
- [2] S. Morimoto, K. Kawamoto, M. Sanada, and Y. Takeda, "Sensorless control strategy for salient-pole PMSM based on extended EMF in rotating reference frame," *IEEE Trans. Ind. Appl.*, vol. 38, no. 4, pp. 1054 - 1061, Jul./Aug. 2002.
- [3] S. Taniguchi, S. Mochiduki, T. Yamakawa, S. Wakao, K. Kondo, and T. Yoneyama, "Starting procedure of rotational sensorless PMSM in the rotating condition," *IEEE Trans. Ind. Appl.*, vol. 45, no. 1, pp. 194 202, Jan./Feb. 2009.