MMC 시스템의 출력 전류 센서 오차 보상에 관한 연구

최재원, Negesse Belete Belayneh, 박창환, 김장목 부산대학교 전기공학과

Compensation Method of Output Current Sensor Error In MMC System

Choi Jae Won, Negesse Belete Belayneh, Park Chang Hwan, Kim Jang Mok Department of Electrical Engineering. Pusan National University

ABSTRACT

모듈형 멀티레벨 컨버터(Modular Multilevel Converter, MMC) 토플로지는 HVDC 송전을 위한 전력변환 시스템 또는 전기추진 선박과 같은 대용량 시스템에 주로 사용된다. 본 논문은 MMC 시스템의 출력 전류 센서에서 전류 검출 과정 시, 발생 가능한 오차 성분의 영향을 분석하였다. 또한 전류 센서의 오차 성분을 일반화 하고, 이를 시뮬레이션을 통해 타당성을 검증하였다.

1. 서 론

일반적인 MMC(Modular Multilevel Converter) 시스템은 그림 1과 같이 병렬로 연결된 3개의 레그로 구성된다. 각 레그는 상단과 하단 암으로 구성되며 각 암은 순차적으로 연결된 N개의 서브 모듈과 암 인덕터로 구성된다. 각 암에 흐르는 암 전류를 통해 순환 전류를 구할 수 있으며, 순환 전류는 출력 전류의 손실 및 소자의 정격 상승의 요인이므로 필히 저감해야하는 성분이다. MMC 시스템에는 암에 흐르는 전류와 각 상에흐르는 전류를 측정하기 위한 전류 센서가 존재한다. 이 때, 출력 전류 센서를 통해 측정된 전류의 값이 오차 계수에 의해 부정확한 측정값을 가지는 경우 MMC 시스템 각 상에 불평형을야기하고, 정상적인 제어를 불가능하게 한다.

2. 본 론

2.1 출력 전류 센서 스케일 오차에 의한 MMC 모델링

PWM 인버터 또는 컨버터에서 측정되는 상전류는 식(1)과 같고, 상전류 센서의 스케일 계수 오차로 인해 측정된 상전류의 값의 변화가 생길 경우, 식(2)와 같이 정의할 수 있다. 전류센서는 정확한 측정을 통해 신뢰성을 향상시키기 위해 3상의전류 센서를 사용한다.

$$\begin{split} I_{as} &= -Isinwt \\ I_{bs} &= -Isin(wt-120) \\ I_{cs} &= -Isin(wt+120) \end{split} \tag{1}$$

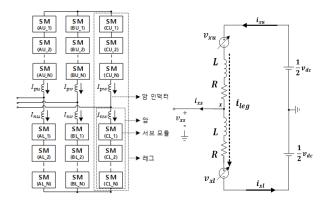


그림 1 N 레벨 MMC 토폴로지 그림 2 MMC 단상 등가모델

$$\begin{split} I_{as_sen} &= -K_a I sinwt \\ I_{bs_sen} &= -K_b I sin(wt-120) \\ I_{cs_sen} &= -K_c I sin(wt+120) \end{split} \tag{2}$$

$$\begin{split} I_{d}^{e} &= -(\frac{2K_{a} - K_{b} - K_{c}}{6})Isin(2wt) + [\frac{\sqrt{3}}{6}(K_{c} - K_{b})]Icos(2wt) \\ I_{q}^{e} &= (\frac{K_{a} + K_{b} + K_{c}}{3})I - [\frac{\sqrt{3}}{6}(K_{c} - K_{b})]Isin(2wt) \\ &- (\frac{2K_{a} - K_{b} - K_{c}}{6})Icos(2wt) \\ I_{n}^{e} &= (-K_{a} + \frac{K_{b}}{2} + \frac{K_{c}}{2})Isinwt + \frac{\sqrt{3}}{2}(K_{b} - K_{c})Icoswt \quad (3) \end{split}$$

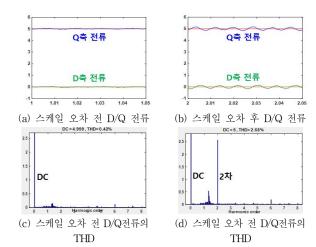
식(2)에서 언급된 $[K_a,K_b,K_c]$ 는 각 상의 전류 센서 스케일 오차 계수이다. 식(2)에서처럼 스케일 계수로 인해 측정된 상전류의 값에 오차가 존재하면, 동기좌표계로 좌표변환 시 식(3)과 같이 D축과 Q축에 동기 주파수의 2배에 해당하는 맥동을 유발한다. 이 전류 맥동은 모터 부하의 토크 맥동을 야기하며, 속도 맥동을 발생한다. 또한 상전류 센서 스케일 계수로 인한 오차는 각 상에 인가되는 상전압 지령에 영향을 미처 서로 다른 전압 변조 지수를 가지고, 결과적으로 각 상의 불평형을 초래한다.

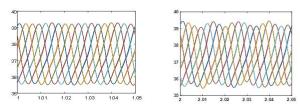
2.2 출력 전류 센서 오프셋 오차에 의한 MMC 모델링

식(1)로 표현한 상전류에 오프셋 오차 계수가 존재할 경우 식

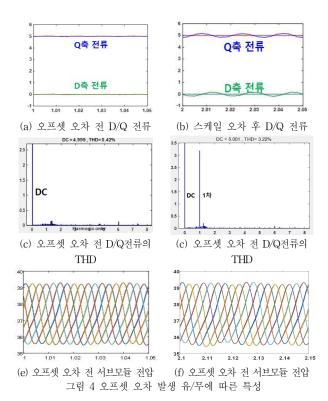
(4)의 3상 전류 값을 획득한다. 식(4)에서 언급된 $[K_1, K_2, K_3]$ 는 각 상의 전류 센서 오프셋 오차 계수이다. 식(4)에서처럼 오프 셋 계수로 인해 측정된 상전류에 오차가 존재하면, 동기좌표계로 좌표변환 시 식 (5)와 같이 D축과 Q축에 동기 주파수의 1배에 해 당하는 맥동을 유발한다. 전류 센서 오프셋 계수로 인한 오차는 각 상에 인가되는 상전압 지령의 DC 성분을 가감시켜 각 상의 불 평형을 야기한다.

$$\begin{split} I_{as_sen} &= -I sinwt + K_1 \\ I_{bs_sen} &= -I sin(wt - 120) + K_2 \\ I_{cs_sen} &= -I sin(wt + 120) + K_3 \end{split} \tag{4}$$


$$\begin{split} I_{d}^{e} &= (\frac{2K_{1} - K_{2} - K_{3}}{3})Icoswt + [\frac{1}{\sqrt{3}}(K_{2} - K_{3})]Isinwt \\ I_{q}^{e} &= I - (\frac{2K_{1} - K_{2} - K_{3}}{3})Isinwt - [\frac{1}{\sqrt{3}}(K_{2} - K_{3})]Icoswt \\ I_{n}^{e} &= \frac{K_{1} + K_{2} + K_{3}}{3} \end{split} \tag{5}$$


3.시뮬레이션

본 논문에서는 MATLAB/Simulink를 통해 5 레벨 MMC 시스 템을 설계하여 출력 전류 센서 오차로 인한 추이 분석을 진행하였 다. 설계한 MMC 시스템은 입력 측에 이상적인 직류 전압과 출력 단에 R, L 부하를 연결한 인버터 모드로 동작한다. 시뮬레이션 동 작 검증은 스케일, 오프셋 오차 유무에 따른 파형 비교를 통해 타 당성을 검증하였다.


표 1 시뮬레이션 파라미터

DC Voltage	150V	No. of SM	4EA
Load Inductor	5mH	Ka	1.05
Arm Inductor	5mH	Kb	1.03
Load Resistor	10Ω	Kc	0.93

(e) 스케일 오차 전 서브모듈 전압 (f) 스케일 오차 전 서브모듈 전압 그림 3 스케일 오차 발생 유/무에 따른 특성

4. 결 론

출력 전류 센서의 오차로 인해 측정되는 전류의 오차가 생 기는 경우, 동기좌표계 D/Q축 전류에 동기 주파수의 1배와 2 배에 해당하는 맥동이 생기는 것을 확인하였다. 또한 스케일 오차로 인해 각 상에 인가되는 전압 지령의 영향을 미치며, 이 를 통해 각 상의 불평형 유발 및 정상적인 제어가 불가능해진 다. 본 논문은 시뮬레이션을 통해 그 타당성을 검증하였다.

참 고 문 헌

- [1] Han Su Jung, Seon Hwang Hwang, Jang Mok Kim, Cheul U Kim and Cheol Choi, "Diminution of current measurement error for vector controlled AC motor drives," IEEE Transactions on Industry Applications, Vol. 42, No. 5, 2006, Sep./Oct
- [2] Qingrui TU, Zheng Xu, Jing Zhang, "Circulating current
- [2] Qingrui TU, Zheng Xu, Jing Zhang, Circulating current suppressing controller in modular multilevel converters,"Annual conference on IEEE industrial electronics society, 2010
 [3] Qingrui Tu, Zheng Xu, Yong Chang, Li Guan, "Suppressing DC voltage ripples of MMC HVDC under unbalanced grid conditions," IEEE Transactions on Power delivery, Vol. 27, No 03, 2012, July.
 [4] Negesse Belete Belayneh, Jang Mok Kim, "Compensation Method of
- Arm Current Sensor Scaling Error In MMC System" Paper for Candidate Master's Cource at Busan National University, 2017, Feb.