Filament, the Universal Nersery of Stars: Progress Report on TRAO Survery of Nearby Filamentary Filamentary Molecular Clouds

  • Published : 2017.10.10

Abstract

To dynamically and chemically understand how filaments, dense cores, and stars form under different environments, we are conducting a systematic mapping survey of nearby molecular clouds using the TRAO 14 m telescope with high ($N_2H^+$ 1-0, $HCO^+$ 1-0, SO 32-21, and $NH_2D$ v=1-0) and low ($^{13}CO$ 1-0, $C^{18}O$ 1-0) density tracers. The goals of this survey are to obtain the velocity distribution of low dense filaments and their dense cores for the study of their origin of the formation, to understand whether the dense cores form from any radial accretion or inward motions toward dense cores from their surrounding filaments, and to study the chemical differentiation of the filaments and the dense cores. Until the 2017A season, the real OTF observation time is ~760 hours. We have almost completed mapping observation with four molecular lines ($^{13}CO$ 1-0, $C^{18}O$ 1-0, $N_2H^+$ 1-0, and $HCO^+$ 1-0) on the six regions of molecular clouds (L1251 of Cepheus, Perseus West, Polaris South, BISTRO region of Serpens, California, and Orion B). The cube data for $^3CO$ and $C^{18}O$ lines were obtained for a total of 6 targets, 57 tiles, 676 maps, and $7.1deg^2$. And $N_2H^+$ and $HCO^+$ data were added for $2.2deg^2$ of dense regions. All OTF data were regridded to a cell size of 44 by 44 arcseconds. The $^{13}CO$ and $C^{18}O$ data show the RMS noise level of about (0.1-0.2) K and $N_2H^+$ and $HCO^+$ data show about (0.07-0.2) K at the velocity resolution of 0.06 km/s. Additional observations will be made on some regions that have not reached the noise level for analysis. To identify filaments, we are using and testing programs (DisPerSE, Dendrogram, FIVE) and visual inspection for 3D image of cube data. A basic analysis of the physical and chemical properties of each filament is underway.

Keywords