Proceedings of the Korean Society of Broadcast Engineers Conference (한국방송∙미디어공학회:학술대회논문집)
- 2016.06a
- /
- Pages.369-372
- /
- 2016
CNN (Convolutional Neural Network) based in-loop filter in HEVC
컨볼루션 신경망을 이용한 고효율 비디오 부호화에서의 인-루프 필터
- Park, Woonsung (KAIST) ;
- Kim, Munchurl (KAIST)
- Published : 2016.06.27
Abstract
본 논문에서는 고효율 비디오 부호화에서 채택하고 있는 인-루프 필터 중 SAO (sample adaptive offset)를 컨볼루션 신경망으로 대체하여 부호화 효율을 향상시키는 방법을 제안한다. SAO 는 양자화 에러를 줄이기 위해 인코더에서 디코더로 적절한 오프셋 값을 전송한다. 제안하는 컨볼루션 신경망을 사용한 인-루프 필터는 인코더와 디코더가 같은 컨볼루션 신경망을 사용하여, 추가적인 비트를 디코더로 전송할 필요 없이 양자화 에러를 줄일 수 있다. 컨볼루션 신경망의 구조는 두 가지를 각각 사용하였고, 각 컨볼루션 신경망의 구조에 대해서 입력 영상과 원래 영상의 평균제곱오차에 따라 다른 모델을 적용하였다. 따라서 제안하는 방법을 HEVC에 적용하여 기존의 방법보다 더 적은 bit 로 더 좋은 화질의 영상을 얻어서 BD-rate 의 gain 을 얻을 수 있을 뿐만 아니라, 주관적인 화질의 비교에서도 더 좋은 결과를 보인다.
Keywords