다층 선형 매핑 기반 단일영상 초해상화를 위한 강화 예측법

최재석, 김문철 한국과학기술원 전기 및 전자 공학부 jschoi14@kaist.ac.kr, mkimee@kaist.ac.kr

Enhanced Prediction for Single Image Super-Resolution Using Multi-Laver Linear Mappings

Jae-Seok Choi, Munchurl Kim Korea Advanced Institute of Science and Technology

요 약

최근 UHDTV(ultra high definition television)가 가정에 보급이 많이 되고 있는 추세지만, UHD급 콘텐츠가 매우 부족한 실정이다. 따라서 저해상도 FHD(full high definition) 영상을 고해상도 영상으로 변환시켜 재활용할 수 있는 초해상화(super-resolution, SR) 기술의 필요성이 커졌다. 그 중, 다층의 레이어로 구성된 다층 선형 매핑(multi-layer linear mappings, MLLM)을 기반으로 하는 제안된 초해상화 기법은 상대적으로 낮은 복잡도로 좋은 품질의 고해상도 영상을 복원할 수 있었다. 최근에는 강화 예측법을 추가하여 복원된 고해상도 영상의 품질을 더 향상시키는 기법이 등장하였는데, 이를 바탕으로 본 논문에서는 제안했었던 MLLM 기법을 위한 강화예측법 기법을 새롭게 제안한다. 제안하는 초해상화 기법은 기존 MLLM 기법과 딥러닝 기반 초해상화 기법보다 높은 품질의 고해상도 영상을 생성하는 것을 확인하였다.

1. 서론

초해상화(super-resolution, SR) 기법은 입력된 저해상도 (low-resolution, LR) 영상으로부터 선명하고 품질이 향상된 고해상도(high-resolution, HR) 영상을 생성할 수 있다. 일반 적으로, 저해상도 입력 영상에서 원래의 고해상도 영상을 복원 하는 문제는 부적절하게 정립된 역 문제(ill-posed inverse problem)로 정의되는데[1], 초해상화 기법은 추가적인 사전 지 식(prior)를 활용하여 고해상도 영상을 복원 가능케 한다. 그 중 특정 저해상도 패치와 이에 해당되는 고해상도 패치는 동일 한 희소(sparse) 가중치를 공유함을 이용하는 희소 부호화 기 반 초해상화(sparse coding super-resolution, SCSR) 기법 [2]이 있다. 또한, 선형 매핑(linear mapping) 기반 초해상화 기법들[3-7]은 상대적으로 적은 복잡도로 각 저해상도 패치에 하나의 매핑을 곱하여 고해상도 패치를 복원한다. SCSR 기법에 서 사용된 저해상도-고해상도 사전(dictionary)들로부터 새로 이 선형 매핑들을 훈련시켜 고해상도 패치 생성에 활용하는 고 이웃 회귀법(anchored neighborhood regression, ANR)[3]과 같은 저자의 조정된 고정 이웃 회귀법(adjusted ANR, A+)[4] 등이 제안되었다. 최근 각광받는 딥러닝(deep learning) 기술[8]은 여러 겹으로 쌓은 다층(multi-layer) 네 트워크를 사용하여 입력과 출력 간의 복잡한 비선형 관계를 정 밀하게 예측할 수 있는 것으로 알려져 있다. 제안되었던 다층 선형 매핑(multi-layer linear mappings, MLLM) 기반 초해상 화 기법[11]은 여러 층의 선형 매핑들을 통해 단계적으로 고해 상도 영상의 품질을 향상시킨다.

최근 강화 예측법을 추가하여 더 향상된 품질의 고해상도 영상을 복원하는 기법[10]이 등장하였는데, 이를 바탕으로 본 논문에서는 제안된 MLLM 기법을 위한 강화 예측법을 제안한다. 실험을 통해 본 초해상화 기법이 기존 MLLM 기법[11]과 딥러닝 기반 초해상화 기법[8]과 더 높은 품질의 고해상도 영상을 생성하는 것을 확인하였다.

2. 제안하는 MLLM 기반 초해상화를 위한 강화 예측법

본 제안 방법은 기존 MLLM[11]을 기반으로 하여 다층으로 이루어져 있는데, 기존 강화 예측법[10]과 달리 각 층에 강화 예측법이 새롭게 도입되어 레이어 수만큼의 강화 예측을 시도하게 된다.

기존 선형 매핑 초해상화 기법들은 훈련 단계에서 여러 개의 선형 매핑들을 미리 훈련시켜놓고, 실행 단계에서 하나의 저해상도 패치가 입력되었을 때, 이 패치의 방향성을 분석하여 알맞은 선형 매핑을 적용시키는 방법을 활용한다. 기존 MLLM기법에서는 방향성을 분석할 때, k-means 기법을 통해 얻어진중심점들과의 거리를 사용한다.

강화 예측법[10]은 한 저해상도 패치에 대해서 이 중심점 들과의 거리 측정을 한번만 진행하는 것이 아니라, 특정 각도만 큼 회전 시켜서 여러 번의 거리 측정을 진행한다. 회전된 패치 는 처음 패치와는 다른 방향성을 지니게 되고, 처음과 다른 중 심점과 가까워지게 되어 다른 선형 매핑이 적용된다. 이 방법을 여러 각도에 적용하여 얻어진 여러 고해상도 패치들을 처음 각 도에 맞게 보정한 후 평균을 취하여 최종 고해상도 패치를 생 성하게 된다.

본 제안 방법은 다층 구조의 MLLM 기법에서 각 층에 강화 예측법을 적용한다. 결과적으로 하나의 고해상도 영상을 생

성하기 위해서 여러 개의 강화 예측법이 적용되는 것이다. MLLM 기법에서는 입력 저해상도 패치의 방향성을 처음 층에서만 분석하고 다음 충들에서는 이 방향성들을 재활용하는 형태이기 때문에, 본 제안 방법에서도 여러 각도에 대한 방향성분석을 첫 층에서만 시도한다. 그 이후 충들에서는 해당 선형매핑들을 적용하고 각도 보정 후 평균을 취하여 각 층의 고해상도 패치를 생성한다. 본 제안 방법에서는 총 4개의 충을 활용하며, 90도 각도를 활용하여 각 저해상도 입력 패치 당 4개의패치를 생성하여 강화 예측법을 적용한다.

본 제안 방법의 비교 실험을 위하여 이중 큐빅 보간법, 딥러닝 기반 초해상화 기법(SRCNN15)[8], MLLM 초해상화 기법[11]과 제안하는 강화 예측법 기반 MLLM 초해상화 기법이 사용되었다. 다음 표 1은 실험 영상들에 대한 PSNR과 구조 유사도 척도(SSIM)[9]을 나타낸다.

표 1. 객관적 품질 비교표.

J. 1. 1 L.	1 11 5	,			
영상 종류		이중 큐빅	SRCNN15[8]	MLLM[11]	제안 방법
bird	PSNR	36.74	40.61	40.79	40.99
	SSIM	0.9726	0.9863	0.9865	0.9869
	시간	0.01	4.16	0.91	2.54
buttefly	PSNR	27.46	32.59	32.84	33.05
	SSIM	0.9155	0.9650	0.9681	0.9691
	시간	0.01	3.49	0.75	2.08
head	PSNR	34.89	35.75	35.79	35.81
	SSIM	0.8631	0.8866	0.8870	0.8874
	시간	0.01	3.83	0.83	2.24

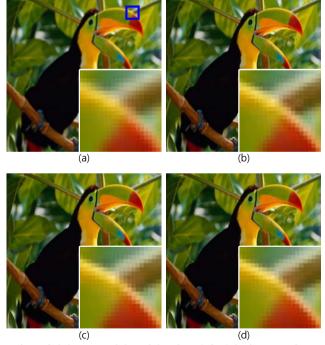


그림 1. 복원된 *bird* 고해상도 영상들의 주관적 품질 비교. (a) 이중 큐빅 보간법, (b) SRCNN15[8], (c) MLLM[11], (d) 제안 방법.

제안하는 강화 예측법 기반 MLLM 초해상화 기법은 최신 딥러닝 기반 SRCNN15 기법[8]과 제안되었던 MLLM 기법보다 더 높은 품질의 영상을 생성한다. 이는 각 층의 강화 예측법이 각 단계의 고해상도 영상 품질을 단계적으로 향상시켜 최종고품질의 고해상도 영상을 생성할 수 있음을 보여주고 있다. 실제 저해상도 입력 영상에 초해상화를 적용할 때 걸리는 실행시간은 각 층의 강화 예측법 도입으로 제안되었던 MLLM 기법

보다는 증가되었지만, 여전히 본 제안 방법의 계산 시간은 SRCNN15 기법보다 더 적은 것을 알 수 있다.

그림 1은 주관적 화질을 비교하기 위해 비교 기법들과 제 안하는 기법을 사용하여 복원한 고해상도 영상들을 보이고 있 다. 여기서 본 제안 방법이 이중 큐빅 보간법, SRCNN15 기법, 그리고 제안되었던 MLLM 기법보다 높은 주관적 품질의 고해 상도 영상을 생성하는 것을 확인할 수 있다.

감사의 글

본 논문 연구는 연구재단 중견연구자사업 핵심연구(개인) 과제(과제번호: 2014R1A2A2A01006642)로 수행되었습니다.

참고문헌

- [1] K. I. Kim and Y. Kwon, "Single-image super-resolution using sparse regression and natural image prior," IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 6, pp. 1127–1133, Jun. 2010.
- [2] J. Yang, J. Wright, T. S. Huang, and Y. Ma, "Image super-resolution via sparse representation," IEEE Trans. Image Process., vol. 19, no. 11, pp. 2861-2873, Nov. 2010.
- [3] R. Timofte, V. De and L. Van Gool, "Anchored neighborhood regression for fast example-based super-resolution," IEEE Int. Conf. Comp. Vis., Sydney, Australia, Dec. 2013, pp. 1920-1927.
- [4] R. Timofte, V. De and L. Van Gool, "A+: adjusted anchored neighborhood regression for fast super-resolution," Asian Conf. Comp. Vis., Singapore, Singapore, Nov. 2014, pp. 111-126.
- [5] J.-S. Choi and M. Kim, "Super-interpolation with edge-orientation-based mapping kernels for low complex 2x upscaling," IEEE Trans. Image Process., vol. 25, no. 1, pp. 469-483. Dec. 2015.
- [6] J. Yang, Z. Lin, and S. Cohen, "Fast image superresolution based on in-place example regression," in Proc. IEEE Conf. Comp. Vis. Pattern Recog., Jun. 2013, pp. 1059-1066.
- [7] M. Bevilacqua, A. Roumy, C. Guillemot and M.-L. A. Morel, "Single image super-resolution via linear mapping of interpolated self-examples," IEEE Trans. Image Process., vol. 23, no. 12, pp. 5334-5347, Dec. 2014.
- [8] C. Dong, C. C. Loy, K. He and X. Tang, "Image superresolution using deep convolutional networks," IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 2, pp. 295-307, June 2015.
- [9] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: From error visibility to structural similarity," IEEE Trans. Image Process., vol. 13, no. 4, pp. 600-612, Apr. 2004.
- [10] R. Timofte, *et al.*, "Seven ways to improve example—based single image super resolution," IEEE Conf. Comp. Vis. Pattern Recog., arXiv:1511.02228v1, Nov. 2015.
- [11] 최재석, 김문철, "다층 선형 매핑 기반 단일영상 초해상화 기법," 한국방송공학회 학술발표대회 논문집, pp. 9-11, June 2016.