피아노 망치의 타격위치 변화에 따른 단일음과 화음의 음색 분석

오상준, 김재현, 정 민 대전과학고등학교 과학과, 대전광역시 유성구 과학로 46 (구성동19-2번지) E-mail: kim0235h@naver.com

본 연구에서는 기존의 피아노와 다른 음색을 갖는 피아노를 기획하고자 하였다. 이를 위해서 피아노 현의 1/2지점, 1/3지점, 1/17지점을 타격했을 때의 배음의 구성을 EDISON의 pianostring 프로그램을 통해 분석하였다. 440Hz의 진동수를 갖는 A4음을 기음으로 하여 각 지점을 타격했을때의 음을 합성하였다. 또한 기음과 첫 두 배음으로 구성된 화음을 합성하였다. 음색을 분석하기 위해 설문조사를 통해 7개의 항목에 대해 평가하였다. 결과적으로 망치의 타격 지점을 변화시킴으로서 원하는 음색을 얻을 수 있을 것이라 기대한다. 일례로 1/2지점을 타격할 때 단일음과 화음의 음색 차이가 확연하게드러나 효과적인 감정표현을 할 수 있을 것으로 예상된다.

서론

피아노는 수 세기동안 이루어진 인류의 음악활동의 한 축이 되어온 대표적인 건반악기이다. 피아노가 소리를 내는 대략적인 메커니즘은 다음 과 같다.

- 연주자가 건반을 누른다
- 건반과 연결된 망치가 피아노의 줄을 쳐서 소리를 낸다

고유한 특정 주파수를 가지는 피아노의 줄이 진동할 때, 그 줄이 가지는 주파수뿐 아니라 다 양한 배음이 피아노의 음을 이루게 된다. 배음은 원래 주파수의 정수배의 주파수를 갖는 음으로, 서로 조화롭게 어우러져 화음의 기준이 되기도 한다. 또한 배음의 구성에 따라서 음색이 결정되 는 만큼, 악기의 배음은 그 악기의 정체성을 나 타낸다고도 해석할 수 있다. 이때, 줄의 진동이 최초로 시작되는 망치의 타격위치에 따라서 배음 의 크기가 달라질 수 있다. [1]

망치의 타격위치(d/L)는 타격위치로부터 가장가까운 현의 지지점의 거리와 피아노 현의 전체 길이의 비로 정의된다. 20세기 중반까지 최적의 d/L 값으로 1/7에서 1/9사이의 값이 제시되었지만 현대의 많은 피아노들은 기존의 타격위치에서 벗어나 1/12, 1/17등 다양한 지점을 타격위치로 설정하고 있다. [2]

따라서 이 논문에서는 기존의 위치와 달리 망치를 배치함으로서 새로운 음색을 갖는 피아노를 기획하고자 한다. 이에 따라 달라지는 배음의 크 기에 따라 화음을 구성하는 음을 새로 정의하여 달라지는 음색을 비교하고자 하였다.

연구 방법

망치의 타격위치는 기존 피아노의 타격점인 1/17지점과 새로운 타격점인 1/2와 1/3으로 설정 하였다. 각각의 지점에서 현을 타격할 때 10배음 까지의 배음 구성은 EDISON에 등록된 application중 하나인 서울대학교 강승진 등록자 님의 Piano String (pianostring)을 사용하여 분석

하였다.

또한 피아노 현을 타격할 때의 기준음은 440Hz의 진동수를 갖는 A4음으로 하였다. 이때각 배음에 해당하는 진동수와 가장 가까운 진동수를 갖는 음은 2배음부터 차례대로 <Table 1>과 같이 계산될 수 있다.

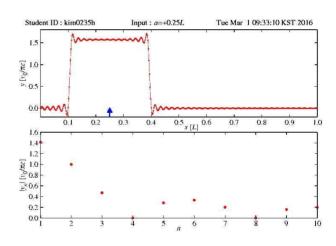


Fig. 1. Piano String 프로그램의 작동 예시

위에서 언급한 EDISON application을 통해 분석된 망치의 위치에 따른 배음의 구성과 각 배음별 진동수 자료를 따라 망치가 각각 1/2지점, 1/3지점, 1/17지점을 타격하였을 때의 음을 음원합성 프로그램인 FL Studio 11을 이용하여 합성하였다.

먼저 1/2지점, 1/3지점, 1/17지점을 타격했을 때의 배음 구성을 따른 3개의 음을 합성하였다. 이때 배음은 상쇄되어 소멸되는 배음을 제외하고 앞에서부터 5개의 배음만을 합성하였다. 그 다음 A4음부터 차례로 3개의 배음을 1번 화음이라 하 고, 각 A4음의 1번 화음을 합성하였다.

제 5 회 첨단 사이언스 교육 허브 개발(EDISON) 경진대회

배음	진동수[Hz]	가까운 음	진동수[Hz]
1	440	A4	440
2	880	A5	880
3	1320	Е6	1319
4	1760	A6	1760
5	2200	C#7	2218
6	2640	E7	2637
7	3080	G7	3136
8	3520	A7	3520
9	3960	B7	3951
10	4400	C#8	4435

Table 1. A4음의 배음별 진동수

합성된 음들의 음색을 비교해보기 위해 음색을 17명의 사람들을 대상으로 설문조사를 수행하였 다. 음색을 평가하는 방법은 기존의 연구를 참고 하였다. [3]

각 음은 5초 이내로 합성되었으며 소리 크기의 영향을 최소화하기 위해 노멀라이즈하였다. 또한 설문대상은 본교에 재학중인 17명의 학생을 무작위로 선별하였다. 설문조사에서는 총 6개의 음들을 응답자들이 각 음에 대해서 모든 항목의 평가를 마칠때까지 같은 음을 반복해서 들려주었다.

각 음에 대한 세부적인 평가항목으로 참가자들에게 '부드러운 - 거친', '밝은 - 어두운', '세련된 - 투박한', '맑은 - 탁한', '강한 - 약한', '긴장된 - 이완된', '선명한 - 흐린'과 같이 총 7쌍의 대립되는 개념의 표제어를 제시하였다. 그리고 각 음을청취한 뒤 각 쌍에서 왼쪽의 단어를 1점, 오른쪽의 단어를 5점으로 하여 1부터 5점까지의 점수로 각 음의 음색을 평가하게 하였다.

또한 음색에 대한 평가를 마친 후에는 응답 중에 답하기 힘들었던 평가 항목이 있다면 그것을 제시하고 그 이유를 설명하도록 하였다. 또한 설 문결과는 취합하여 각 항목별로 설문참가자들이 평가한 점수들의 평균을 구하여 표로 정리하였다.

결과 및 논의

1/2	1	2	3	4	5	
부드러운		S	Н			거친
밝은		Н		S		어두운
세련된			Н	S		투박한
맑은		Н		S		탁한
강한		Н	S			약한
긴장된			H S	5		이완된
선명한		Н		S		흐린

Table 2. d/L = 1/2 (H: 화음, S: 단일음)

1/3	1	2	3	4	5	
부드러운		Н	S):	거친
밝은	В					어두운
세련된	SH					투박한
맑은	8					탁한
강한	S H					약한
긴장된	S H					이완된
선명한	S H					흐린

Table 3. d/L = 1/3 (H: 화음, S: 단일음)

1/17	1	2	3	4	5	
부드러운		S	Н	1		거친
밝은			Н	S		어두운
세련된				S H		투박한
맑은				SH		탁한
강한		Н	S			약한
긴장된		Н	S			이완된
선명한			Н	S		흐린

Table 4. d/L = 1/17 (H: 화음, S: 단일음)

일단 전체적으로 각 평가항목별로 표준편차를 구해보았을 때 1.0 내외의 값을 가졌다. 따라서 설문참가자들의 응답이 일정한 경향성이 있다고 해석된다.

단, '긴장된 - 이완된' 항목과 '선명한 - 흐린' 항목에서는 일부 응답자가 인터뷰에서 적절하지 않은 평가항목이라는 의견을 보였다. 따라서 해 당 항목의 데이터를 완전히 신뢰할 수 없다.

구체적으로 화음의 경우 '부드러운 - 거친' '밝은 - 어두운', '세련된 - 투박한', '맑은 - 탁한' 의 평가항목에서는 화음들은 d/L값이 작아질수록

제 5 회 첨단 사이언스 교육 허브 개발(EDISON) 경진대회

'거친', '어두운', '투박한', '탁한'에 가깝게 느끼는 것으로 조사되었다.

같은 평가항목에서 단일음은 d/L값이 1/2인경우와 1/17인 경우가 비슷한 음색을 보였다. d/L 값이 1/3일때, 응답자들은 다른 두 경우와 다른 의견을 보였다.

같은 d/L값을 가질 때 화음과 단일음의 음색차이를 비교해보면 1/2일 때 차이가 제일 두드러졌다. 이와 대조적으로 1/3일 때는 화음과 단일음간의 음색차가 가장 적게 나타났다.

결론

피아노에서 d/L값이 작아질수록 화음의 음색은 '거친', '어두운', '투박한', '탁한'에 가깝게 느낀다. 이를 토대로 d/L값을 변화시켜 원하는 음색을 효 과적으로 표현할 수 있을 것이다.

특히, 1/2을 타격지점으로 한 피아노의 경우화음과 단일음 간의 음색 차이가 확연하게 드러나므로 곡 중 화음 구성에서 다양한 분위기를 연출할 수 있을 것이라고 기대한다.

1/3을 타격지점으로 한 피아노의 경우는 기존의 피아노와 다른 음색을 가진다. 다만 화음과음색의 차이가 거의 없어 악기로서의 기능은 다소 부족할 것이라고 예상한다.

감사의 글

본 논문은 2015년도 정부(미래창조과학부)의 재원으로 한국연구재단 첨단 사이언스·교육 허브 개발 사업의 지원을 받아 수행된 연구임 (2012M3C1A6035302)

참고문헌

- [1] 이채현, 김희준, 김상열, 김현빈 (2013) "배음 의 주파수 분석을 통한 이미지 시각화 연구", 경희대학교
- [2] Harold A. Conklin Jr. (1990). "Where should the hammer hit the string", Royal Swedish Academy of Music, https://www.speech.kth.se/music/5_lectures/co nconk/whereshould.html (accessed March 10, 2016)
- [3] 조원주, 김준 (2013). 해금과 바이올린 음색에 대한 언어적 표현분석. 음악논단, 30, 101-116.