포스터발표초록

고에너지천문학/이론천문학

[포 HA-01] The Luminosity/Spectral Lag Relations of the Short GRBs with Extended Emission

Yun-A Jo^{1,2}, Heon-Young Chang^{1,2}
¹Department of Astronomy and Atmospheric
Sciences, Kyungpook National University, Daegu,
Korea, ²Research and Training Team for Future
Creative Astrophysicists and Cosmologists (BK21
Plus Program), Kyungpook National University,
Daegu, Korea

The Gamma-Ray Bursts (GRBs) are classified into the long GRBs (LGRBs) and the short GRBs (SGRBs). Their progenitors are expected to be different because they have its own distinct characteristics. Occasionally, the SGRBs having faint extended emission (EGRBs) are observed. The EGRBs exhibit the analogous properties that the SGRBs have, but observed T90 of the EGRBs is longer than two seconds as the LGRBs. Because the EGRBs have characteristics of the LGRBs and the SGRBs, study of the EGRBs is important to understand origins of the GRBs. In this study, we obtain the luminosity relations of the EGRBs observed by Swift/BAT. We compare these results with luminosity relations on the LGRBs and SGRBs. In addition, we examine the spectral lag relations of spike and extended emission component of the EGRBs detected by CGRO/BATSE, Konus/WIND, Swift/BAT, Fermi/GBM and compare to each other. We find that the luminosity relations of the EGRBs present different results with the LGRBs and the SGRBs. In the spectral lag relations, extended emission component expresses opposite results compared with spike component. Furthermore, the spectral lag relations from the four instruments came up with different outcomes to each other.

고천문학/천문역법

[포 HA-02] Installation of Sundials at National Youth Space Center

Yong-Cheol Shin, Wonseok Kang, Sun-Gill Kwon, Sang-Gak Lee,

National Youth Space Center

해시계는 태양의 겉보기 운동을 통해 시간과 좌표계에 대한 이해를 도와주는 도구 중 하나이다. 국립고흥청소년 우주체험센터에서는 지평면 해시계와 수직 해시계를 덕흥천문대에 설치하였다. 지평면 해시계는 관측자 자신의 그림자로 시각을 알 수 있도록 제작하였다. 관측자가 서는 곳에 아날렘마, 매월 1일의 위치 및 각 절기를 표기하여 균시차를 보정할 수 있게 하였다. 벽면 해시계는 가로 1.8m, 세로 1.8m 크기로 황동 주물제작하여 정남향으로 설치하였다. 눈금의 간격은 15분이며 균시차 보정은 하지 않았다. 두 해시계 모두 실제 센터의 경도에 맞춰 설계했으며 표준시와 시간차이를 보이게 했다.

지평면 해시계와 수직 해시계는 센터를 찾아오는 방문 객에게 과학적 호기심을 일으키는 야외 체험전시물의 역 할을 할 수 있을 것으로 기대하며 향후 해시계를 활용한 실험체험 프로그램을 통하여 청소년이 시간과 좌표계의 개념을 쉽고 명확하게 이해하는데 도움을 주고자 한다.

교육홍보

[₹ AE-01] Development of TRT Kit for Optical Experiments with Reflective Telescopes

(다양한 반사광학계 실험 실습을 위한 TRT Kit 개발)

Woojin Park (박우진)¹, Soojong Pak (박수종)^{1,2}, Seunghyuk Chang (장승혁)³, Geon Hee Kim (김건희)⁴, Byeongjoon Jeong(정병준)⁴, Sanghyuk Kim(김상혁)⁵, Hye-In Lee(이혜인)¹, Tae-Geun Ji(지태근)¹, Jeongha Gwak (곽정하)², Kwang Jo Lee(이광조)⁶, Hyoeun Kim(김효은)², Saepbyul Choi(최샛별)⁷, Soonchang Park(박순창)⁷

¹School of Space Research and Institute of Natural Science, Kyung Hee University

²Department of Astronomy & Space Science, Kyung Hee University

³Center for Integrated Smart Sensors, Korea Advanced Institute of Science and Technology (KAIST)

⁴Korea Basic Science Institute

⁵Optical Astronomical Technology Group, Korea Astronomy and Space Science

⁶Department of Applied Physics, Kyung Hee University,

⁷METASPACE

일반적으로 사용되는 소구경 망원경은 경통에 의한 차 폐로 인해 내부 구조를 보기 쉽지 않으므로, 망원경 광학

계를 이해하기에는 적합하지 않다. 본 연구에서는 최소한 의 배플 만을 사용하여 경통이 없는 구조의 개방형 망원경 을 설계 및 제작하였다. 개발된 변환식 반사망원경 키트 (TRT Kit, Transformable Reflecting Telescope Kit)는 부경 모듈을 교체하는 방식만으로 뉴턴식 망원경 (Newtonian Telescope), 카세그레인식 (Cassegrain Telescope), 그리고 그레고리식 망원경 (Gregorian Telescope)으로 변형하는 것이 가능하다. 주 경, 부경을 비롯한 망원경의 모든 부분은 사용자가 직접 조립할 수 있도록 모듈화(Modularization) 하였다. 또한 부경에 부착된 슬라이딩 장치 및 리니어 스테이지(Linear Stage)는 망원경의 초점을 정밀하게 맞출 수 있도록 설계 하였다. TRT Kit를 이용하여 학생들은 세 가지 형태의 망 원경 광학계를 직접 조립하고 그 구조 및 성능을 비교해 볼 수 있으며, 광축 정렬, 정밀 초점 조절 과정을 통해 기 본적인 광학계의 원리를 이해 할 수 있다.

[포 AE-02] The Development and Installation of the DNSM 1meter Telescope

Eunwoo Choi¹, Hyeonoh Hur¹, Hae-Jin Jeon¹, Daegil Hong¹, Dong-Soo Choi², Kyoung-Rock Kim², Young-Dong Cho², Tae-Yoon Kwak²

¹Daegu National Science Museum (DNSM), 2Justek, Inc.

국립대구과학관 천체 관측 핵심시설인 1m 반사망원경 을 개발하고 설치 완료하였다. 본 발표에서는 국립대구과 학관 1m 망원경의 시스템 사양과 개발 및 설치과정을 전 반적으로 기술하고 앞으로의 활용계획에 대해 소개하고자 한다. 이번에 도입된 주망원경은 지난 2014년 11월부터 광학계 및 마운트 설계를 시작으로 2016년 5월까지 약 1 년 6개월의 개발기간을 거쳐 설치 완료되었다. 순수 국내 기술로 개발된 주망원경은 주경 1,000mm(부경 300mm) 의 유효구경을 가지며 후방초점거리가 700mm인 초점비 F/8의 리치-크레티앙 방식의 광학계로 설계되었다. 레이 저 간섭계를 이용하여 거울면 전체의 형상 오차를 정밀하 게 측정한 결과 주경면 PV < λ/4, RMS < λ/20, 부경면 PV < λ/10, RMS < λ/50의 형상 정밀도를 가진다. 포크 형태의 경위대식 마운트 구조로 방위각, 고도 양축과 디로 테이터에 각각 모터가 장착되어 움직이는 다이렉트 드라 이브 방식으로 구동된다. 최대 구동속도는 2°/s이상, 포인 팅 정밀도는 2'이하, 10분간 추적 정밀도는 3"이하(10분 간 오토가이더 추적 정밀도는 1"이하)의 구동 성능을 가진 다. 제어용 컨트롤 시스템은 JTCS(Justek Telescope Control System)를 사용한다. 성능 평가를 위해 시험 관 측된 10~13등급 사이 10개의 별들에 대한 FWHM 측정결 과는 4~5" 범위에 있다. 앞으로 지속적인 성능 평가와 업 그레이드를 통해 향후 정밀도를 높여 학술 연구용으로 공 개할 예정이다. 이번 국립대구과학관 1m 주망원경의 도입 으로 지역 천문교육 프로그램이 한 단계 더 도약할 수 있 을 것으로 기대한다.

이 사업은 2013년 미래창조과학부 국립대구과학관 전 시관운영사업의 지원을 받아 이루어졌다.

[포 AE-03] Applications of Open-source Spatio-Temporal Database Systems in Wide-field Time-domain Astronomy

Seo-Won Chang¹, Min-Su Shin²

¹Yonsei University, ²Korea Astronomy and Space Science

We present our experiences with open-source spatio-temporal database systems for managing and analyzing big astronomical data acquired by wide-field time-domain sky surveys. Considering performance, cost, difficulty, and scalability of the database systems, we conduct comparison studies of open-source spatio-temporal databases such as GeoMesa and PostGIS that are already being used handling geographical data. big experiments include ingesting, indexing, querying millions or billions of astronomical spatio-temporal data. We choose the public VVV (VISTA Variables in the Via Lactea) catalogs of billions measurements for hundreds of millions objects as the test data. We discuss issues of how these spatio-temporal database systems can be adopted in the astronomy community.

천문화학/천연생물학

[포 AA-01] Evolution of Galaxy Habitability

Sungwook E. Hong (홍성욱), Raphael Gobat School of Physics, Korea Institute for Advanced Study (고등과학원 물리학부)

We combine a semi-analytic model of galaxy evolution with constraints on circumstellar habitable zones and the distribution of terrestrial planets in order to probe the suitability of galaxies of different mass and type to host habitable planets, and how it evolves with time. We find that the fraction of stars with terrestrial planets in their habitable zone (known as habitability) depends only weakly on galaxy mass, with a maximum around $4\times10^{10}M_{\odot}$. We estimate that 0.7% of all stars in Milky Way-type galaxies to host a terrestrial planet within their habitable zone, consistent with the value derived from Kepler observations. On the other hand, the habitability of passive galaxies is slightly but systematically higher, unless we assume an unrealistically high sensitivity of planets to supernovae. We find that the overall habitability of galaxies has not changed significantly in the last ~8 Gyr, with most of the habitable planets in local