Polarization of Rayleigh Scattered Lyα in Active Galactic Nuclei

  • Chang, Seok-Jun (Department of Physics and Astronomy, Sejong University) ;
  • Lee, Hee-Won (Department of Physics and Astronomy, Sejong University) ;
  • Yang, Yujin (Korea Astronomy and Space Science Institute)
  • Published : 2016.04.12

Abstract

Active galactic nuclei (AGNs) typically show a non-thermal continuum locally represented by a power-law and many prominent emission lines in the UV and optical regions. AGNs are classified by two types, where Type I AGNs exhibit both broad and narrow lines and only narrow lines are observed in Type 2 AGNs. The unification models of AGNs invoke the existence of a molecular torus just outside of the broad line region. In the presence of a high column HI region associated with the molecular torus, we propose that significant fraction of broad line photons near Lyman series can be scattered by atomic hydrogen in the torus. In particular, $Ly{\alpha}$ being the strongest emission line, strong linear polarization may develop around $Ly{\alpha}$ through Rayleigh scattering. We adopt a Monte Carlo technique to investigate the polarized transfer of $Ly{\alpha}$ in a thick HI region with the shape of a torus. We consider the range of HI column density N_HI = 1020-23 with fixed geometric parameters of the torus such as the inner and outer radii and the height. We present the polarized spectra and angular distribution of Rayleigh scattered radiation around $Ly{\alpha}$. We find that the $Ly{\alpha}$ core part is polarized in the direction perpendicular to the symmetry axis whereas in the far wing part it is polarized in the parallel direction. It is concluded that the unification of AGNs implies that $Ly{\alpha}$ can be uniquely polarized through Rayleigh scattering.

Keywords