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요   약 
 

In this paper, we propose a matrix completion algorithm for Internet of Things (IoT) 

localization. The proposed algorithm recovers the Gram matrix of sensors by 

performing optimization over the Riemannian manifold of fixed-rank positive 

semidefinite matrices. We compute and show the closed forms of all the differentially 

geometric components required for applying nonlinear conjugate gradients combined 

with Armijo line search method. The numerical experiments show that the 

performance of the proposed algorithm in solving IoT localization is outstanding 

compared with the state-of-the-art matrix completion algorithms both in noise and 

noiseless scenarios. 

 
1. Introduction 

 

Recently, Internet of Things (IoT) has received 

much attention for its plethora of applications, such as 

healthcare, surveillance, automatic metering, 

environmental monitoring, to name just a few. In 

sensing the environmental information wireless 

sensor network consisting of hundreds to thousands 

sensor nodes is often used. In order to interpret the 

environmental information and then make a proper 

reaction, the data center (e.g., access point, 

basestation) should have the location of sensor nodes 

[1, 2]. Traditionally, location information has been 

obtained at the sensor node via GPS-based 

triangulation. For the IoT network using small, cheap, 

and low-power sensor nodes, however, GPS-based 

approach is not so appealing. 

In recent years, an approach to identify the 

location information at the data center has been 

received much attention. In this approach, basically, 

each sensor node measures the distance information 

of adjacent nodes and then send it to the data center. 

Once obtaining the distance information, the data 

center use multidimensional scaling (MDS) methods 

[3]. In measuring the distance, various physical layer 

techniques have been used including RSSI, TDoA, and 

AoA. Since these techniques are based on terrestrial 

communication, they have many benefits over the 

GPS technology (e.g., cost and complexity). 

When implementing this approach, one well-

known concern is that the available distance 

information at the data center is limited due to 

various reasons including the power outage of the 

sensor node or limitation of radio communication 

range, obstructing the accurate identification of 

location information. The practical limitation of 

sensors motivates the design of efficient algorithms 

for reconstructing all the pairwise distances from its 

small subset so that MDS can then be used to find the 

location of sensors. 

In this paper, we propose the matrix completion 

algorithm to find the location of sensors. The 

proposed algorithm applies the generalization of 

nonlinear conjugate gradient (CG) method over the 

Riemannian manifold of fixed-rank symmetric 

positive semidefinite matrices. In term of well-

defined Riemannian manifold, following the framework 

of retractionbased optimization [4, 5], we show that 

the proposed algorithm can recover the missing 

pairwise distances and also compute the location of 

sensor nodes with high accuracy. 
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We briefly summarize notations used in this 

paper. diag(A) is the vector formed by the main 

diagonal of A, and Sym(A) is the matrix formed by 

Sym(A) = 1/2(A + AT) for any square matrix A. The 

matrix eye(a) is the adjoint operator of diag().

 
2

( , ) : i jE i j x x r    is the set of the 

observed indices, and the sampling operator EP given 

by [ EP (A)]ij = Aij if (i,j) ∈ E, and zero otherwise. 

The observed matrix is Dobs = EP (D). 

 

2. System Model and Problem Description 

 

Let 𝒙𝑖 ∈ ℝ𝑘  ( 1,...,i n ) be the coordinate 

vectors of 𝒏 sensor nodes randomly distributed in 𝒌 

-dimensional Euclidean space (typically 𝒌 = 2 or 3), 

and the coordinate matrix  1 2 ...
T

nX x x x . 

Then the Euclidean distance matrix 𝐷 ∈ ℝ𝑛×𝑛  is 

defined as 
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where
2

2ij i jd x x  is the distance between two 

nodes ix and jx . It can be shown that rank(D) ≤ k + 

2, and that D = κ(Y) where Y = XXT and κ(Y) = 

1diag(Y)T + diag(Y)1T − 2Y. 

Thus, one can reconstruct D by solving 

(P1) {
min�̃�∈𝑆+

𝑛×𝑛
1

2
‖𝑃𝐸(𝜅(𝑌)) − 𝐷𝑜𝑏𝑠‖

𝐹

2

𝑠. 𝑡.                𝑟𝑎𝑛𝑘(𝑌) ≤ 𝑘
 

 

The main idea of (P1) is to reconstruct 𝐷  by 

searching a low rank matrix 𝑌 ∈ 𝑆+
𝑛×𝑛 such 

that 𝑃𝐸(𝜅(𝑌)) is consistent with 𝐷𝑜𝑏𝑠 . From the 

eigenvalue decomposition Y = QΛQT, we obtain the 

coordinate matrix X = QΛ1/2. Note that due to the 

preservation of distance, there are many coordinate 

matrix 𝑋  satisfying 𝐷 = 𝜅(𝑌) = 𝜅(𝑋𝑋𝑇),  and that our 

target is to find one of them. In the sequel, we let 

𝑓(�̃�) =
1

2
‖𝑃𝐸 (𝜅(�̃�)) − 𝐷𝑜𝑏𝑠‖

𝐹

2
 By defining 𝑀𝑘

+ =

{𝑌 ∈ 𝑆+
𝑛×𝑛 ∶  𝑟𝑎𝑛𝑘(𝑌) = 𝑘}, the problem (P1) is recast as 

(P2)min�̃�∈𝑀𝑘
+ 𝑓(�̃�). 

 

 

3. The Proposed Algorithm 

 

The key idea of the proposed algorithm is to 

sequentially find the solution �̃� of (P2) using the 

generalization of nonlinear conjugate gradient method 

with Armijo line search based on the framework of 

retraction-based optimization [4, 5]. Once obtaining 

the Gram matrix Y, we then compute X immediately 

using the eigenvalue decomposition of Y. The 

proposed algorithm is summarized in Table 1. Due to 

the page limitation, we skip the proofs of lemmas and 

propositions (see [6] for details). 

3.1. The Riemannian Manifold 𝑀𝑘
+ 

Let 𝑆𝑡𝑘
+ = {𝒬 ∈ ℝ𝑛×𝑘: 𝒬𝑇𝒬 = 𝐼𝑘} 

be defined as the Stiefel manifold and let 

  1 1( ... ) : ... 0
T

k kL eye        . 

Then we can represent   

𝑀𝑘
+ = {𝑄Λ𝑄𝑇: 𝑄 ∈ 𝑆𝑡𝑘

𝑛, Λ ∈ 𝐿} 

The smooth manifold structure of 𝑀𝑘
+ as well as 

the closed form of its tangent space is shown in the 

following proposition. Note that this proposition is a 

reformulation of Proposition 2.1 in [4] in terms of the 

newly defined manifold. 

Proposition 3.1. The set 𝑀𝑘
+ is a smooth 

submanifold of dimension 1/ 2(2n k 1)k   

embedded in ℝ𝑛×𝑛 . Its tangent space 𝑇𝑌𝑀𝑘
+ at

TY Q Q  is given by 

𝑇𝑌𝑀𝑘
+ = {[𝒬 𝒬⊥] [𝐵 𝐶𝑇

𝐶 0
] [

𝒬𝑇

𝒬⊥
𝑇]} 

= {𝒬𝐵𝒬𝑇 + 𝒬𝒬𝑃
𝑇 + 𝒬𝑃𝒬𝑇: 𝐵 ∈ ℝ𝑘×𝑘 , 𝐵 = 𝐵, 𝒬𝑃

= 𝒬⊥𝐶, 𝐶 ∈ ℝ(𝑛−𝑘)×𝑘} 

 

And the projection ( )
Y kT M

P A  of a matrix A  is 

computed as 

( ) ( ) ( ) ( )
Y k

Q Q Q QT M
P A P Sym A Sym A P P Sym A P      

where we define
T

QP QQ . 

In order to perform optimization over kM 
, we 

equipped kM 
 with the Riemannian metric 

     1 2,Yg   , (2) 
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where 1 2, Y kT M   . Further, we introduce the 

metric projection YR as a local smooth mapping from 

the tangent space Y kT M 
 to kM 

, 

𝑅𝑌: 𝜉 → 𝑅𝑌(𝜉) ≜ 𝑃𝑀𝑘
+(𝑌 + 𝜉)

= arg min
𝑍∈𝑀𝑘

+
‖𝑌 + 𝜉 − 𝑍‖𝐹 

It can be shown that YR satisfies the definition of the 

retraction in [7], based on Lemma 2.2 in [8]. 

3.2. Nonlinear CG Method 

Nonlinear CG method solves the problem (P2) 

iteratively. The update equation is 1 ( )
ii Y i iY R    

where i is the step size, and
ii Y kT M   is the 

search direction. The search direction i is the linear 

combination of the previous search direction 1i  and 

the Riemannian gradient defined as the tangent vector

( )
iY kgrad Y T M  satisfying 

, ( ) , ( ) ,Y Yg grad f Y f Y     

for any tangent vector Y kT M  , and ( )Y f Y is 

the Euclidean gradient determined in the following 

lemma. 

Lemma 3.2. The Euclidean gradient of ( )f Y  is 

( ) 2 ( ( )1) 2Y f Y eye Sym Z Z   where Z   

2 ( (1 ( ) ) )T

E obsP Sym diag Y Y D   . 

We transport 1i  to
iY kT M 

using the mapping 

1i iY YT
  defined in [4]. 

Table 1. The proposed algorithm 

 

Input: Dobs, PE, τ: tolerance, β ∈ (0 1) T: number 

of iterations. 

Initialize: Y1 ∈ kM 
 , i = 1, tangent vector 0 . 

 

While i ≤ T do 

1: Compute the Riemannian gradient i   

2: Compute a conjugate direction i   

3: Use Armijo line-search to find the step size i   

4: 1 ( )
ii Y i iY R     

5: 
1 1 12 (1 ( ) )T

i i iD Sym diag Y Y  
      

   If 1( )E i obs F
P D D     then break 

6: i = i + 1 

End 

7: Obtain the eigen-decomposition �̃� = 𝑄Λ𝑄𝑇
 

8: �̃� = 𝑄Λ
1
2 

Output: �̃�  

 

In determining the step size i we use a fast line 

search scheme so called Armijo’s rule, i.e. i   

0.5m

it where it  is the initial step size and 0m   is 

the smallest integer satisfying 

( ) ( (0.5 )) 0.5 , ,
i

m m

i Y i i i i if Y f R t t        

where τ is a given scalar in (0,1). 

 

4. Simulation and Discussion 

For comprehensive view, we observe the 

performance of matrix completion algorithms 

including the proposed algorithm, ADMiRA [9], 

LMaFit [10], LRGeomCG [4], and TNN-ADMM [11] 

through empirical simulations with the maximal 

number of sensor nodes to 100n  , the number of 

trials to 30, and test the performance, measured in 

terms of the root mean square error (RMSE) defined 

as 

𝑅𝑀𝑆𝐸 =
1

𝑛
‖𝐿�̃��̃�𝑇𝐿 − 𝐿𝑋0𝑋0𝐿‖

𝐹
, (6)  

where
1

11TL I
n

  and 0X  is the true coordinate 

matrix of the sensor nodes. 
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Fig. 1. Performance of various matrix completion 

algorithms in noiseless scenario 

 

SNR 

Fig. 2. Performance of various matrix completion 

algorithms for 0.7   in noise scenario 

Fig. 1 provides the RMSE with respect to the 

expectation of the sampling ration  [6]. In general, 

we observe that the RMSE improves with  . The 

performance of the proposed algorithm dominates for 

small  . In Fig. 2, we plot RMSE results in noise 

scenario for 0.7  . Overall, we see that the 

performance of matrix completion algorithms is a bit 

worse than the noiseless scenario, and the RMSE of 

the proposed algorithm is the lowest one. 
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