Annual Conference on Human and Language Technology (한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리))
- 2015.10a
- /
- Pages.23-28
- /
- 2015
- /
- 2005-3053(pISSN)
Improving The Performance of Triple Generation Based on Distant Supervision By Using Semantic Similarity
의미 유사도를 활용한 Distant Supervision 기반의 트리플 생성 성능 향상
- Yoon, Hee-Geun (School of Computer Science and Engineering, Kyungpook National University) ;
- Choi, Su Jeong (School of Computer Science and Engineering, Kyungpook National University) ;
- Park, Seong-Bae (School of Computer Science and Engineering, Kyungpook National University) ;
- Park, Se-Young (School of Computer Science and Engineering, Kyungpook National University)
- Published : 2015.10.17
Abstract
본 논문에서는 한국어 트리플 생성 시스템의 정확도를 향상시키기 위한 distant supervision 기반의 신뢰도 측정 방법을 제안한다. 기존의 많은 패턴 기반의 트리플 생성 시스템에는 distant supervision의 기본 가정으로 인해 다수의 오류 패턴이 발생할 여지가 크다. 기존의 연구에서는 오류 패턴을 제거하기 위하여 발생 빈도, 공기 횟수 등의 통계에 기반하여 간접적으로 신뢰도를 측정하였다. 본 논문에서는 한국어 패턴과 영어 프로퍼티 사이의 의미 유사도를 측정함으로써 통계에 기반한 방법보다 더 정확한 신뢰도 측정 방법을 제안한다. 비지도 학습 방법인 워드임베딩을 활용하여 어휘의 의미를 학습하고, 이들 사이의 유사도를 측정한다. 한국어 패턴과 영어 프로퍼티의 어휘 불일치 문제를 해결하기 위하여 정준상관분석을 활용하였다. 실험 결과에 따르면 본 논문에서 제안한 패턴 신뢰도 측정 방법은 통계 기반의 방법에 비해 정확률이 9%나 더 높은 트리플 집합을 생성함을 보여주어, 의미 유사도를 반영한 신뢰도 측정이 기존의 통계 기반 신뢰도 측정보다 고품질 트리플 생성에 더 적합함을 확인하였다.