# EV 배터리 충전기용 무선전력전송 시스템의 주파수 추종 알고리즘

변종은, 김민국, 주동명, 이병국<sup>+</sup> 성균관대학교 전자전기컴퓨터공학과

## Frequency Tracking Algorithm of Inductive Power Transfer System for EV Battery Charger

Jong Eun Byeon, Min Kook Kim, Dong Myoung Joo, and Byoung Kuk Lee<sup>†</sup> Department of Electrical and Computer Engineering, Sungkyunkwan University

#### ABSTRACT

본 논문에서는 SP 토폴로지를 가지는 무선전력전송 시스템 에서 결합 계수 및 부하 변화에 따른 Zero phase angle (ZPA) 주파수 추종 제어 알고리즘을 제안한다. 제안한 알고리즘은 부 가적인 아날로그 회로 없이 기존의 디지털 제어기에 적용되어 ZVS 영역에서 동작하도록 공진 주파수를 추종한다. PSIM 시 뮬레이션 및 실험을 통해 주파수 추종 성능을 검증한다.

#### 1. 서 론

무선전력전송 시스템은 일반적으로 VA 정격의 최소화 및 효율 상승을 위해 Zero phase angle (ZPA) 주파수에서 동작한 다. 하지만 실제 시스템에서 ZPA 주파수는 송수신패드의 수직 /수평이격, 결합계수 또는 부하 조건에 따라 변하기 때문에 고 정주파수 동작으로는 일정한 출력 전압을 얻을 수 없으며 1차 측 브리지 토폴로지의 ZCS 동작에 의해 시스템이 소손 될 수 있다. 하지만 기존의 제어방식은 구성이 복잡하고, 송신측의 공 진 파라미터를 불연속적으로 제어하기 때문에 모든 부하에 대 해 유연한 대응이 어렵다<sup>[1]</sup>. 따라서 시스템 파라미터 변화를 고 려하여 시스템을 항상 ZPA 주파수에서 동작하도록 하는 주파 수 제어 알고리즘이 필요하다.

본 논문에서는 무선전력전송 시스템의 주파수 제어 알고리 즘을 제안한다. 제안하는 알고리즘은 수신측과의 통신이 불필 요하며 추가적인 아날로그 회로 없이 1차측 브리지의 ZPA 동 작이 가능하다. 제안한 알고리즘을 DSP에 적용하여 3 kW급 SP 토폴로지를 통해 주파수 제어 성능을 검증한다.

#### 2. 제안하는 주파수 제어 알고리즘

## 2.1 시스템 구성



그림 1 SP 토폴로지 IPT 시스템 회로도 Fig. 1 Circuit of SP Topology in IPT system.

| <u>.</u> . | 1 | SP 토폴로지 IPT 시스템 사양                          |
|------------|---|---------------------------------------------|
| 「able '    | 1 | Specifications of SP topology in IPT system |

| Parameter | Value     | Parameter | Value       |
|-----------|-----------|-----------|-------------|
| $V_{dc}$  | 380 V     | k         | 0.13, 0.155 |
| $C_p$     | 3.86 nF   | $L_p$     | 940 uH      |
| $C_s$     | 237.13 nF | Ls        | 15.85 uH    |

그림 1은 SP 토폴로지 회로를 나타낸다. 시스템은 IPT 컨버 터, 보상 네트워크 그리고 다이오드 정류기로 구성되어 있으며 주파수 제어를 위한 공진 전류 센싱 회로를 송신측 보상 네트 워크 입력 단에 추가하였다. 시스템 사양은 표 1 과 같다.

#### 2.2 주파수 제어 알고리즘

특정 설계 조건에서는 IPT 컨버터가 ZPA 주파수에서 동작 할 수 있다. 그러나 실질적인 동작 상황에서 ZPA 주파수는 결 합계수 및 부하의 변동에 따라 변하며, 조건에 따라 ZCS 영역 에서 동작하게 되어 스위치 소손을 초래할 수 있다. 따라서 시 스템의 안정성 및 효율 향상을 위해 ZPA 주파수에 가까운 ZVS 영역에서 동작하도록 하는 주파수 제어 알고리즘이 필요 하다. 이를 위해 그림 1과 같이 공진 전류 센싱 회로를 추가한 다. DSP 제어 특성 상 공진 전류 센싱은  $Q_1$  및  $Q_2$ 가 턴 온되 는 시점과  $Q_3$  및  $Q_4$ 가 턴 오프 되는 시점에서 가능하다. 그림 2는 IPT 컨버터의 주요 파형 및 가능한 공진 전류 센싱 시점 을 나타낸다.  $Q_3$  및  $Q_4$ 가 턴 오프 되는 시점에서 연류를 센싱 하는 경우  $Q_1$  및  $Q_2$ 가 턴 온되는 시점에서 음의 값이 될 수 있도록 하는 전류 값을 식 (1) (3)과 같이 계산해야 한다<sup>21</sup>.



그림 2 공진 전류 센싱 개념도

Fig. 2 Conceptual diagram of resonant current sensing.

$$Z_{in} = Z_r + j\omega L_p + \frac{1}{j\omega C_p} \tag{1}$$

$$I_{p}(t) = \frac{|V_{1}|}{|Z_{in}|} sin(\omega t + \theta)$$

$$L(t_{deadtime}) < 0$$
(2)
(3)

$$I_p(t_{deadtime}) < 0$$

이 때 Zr은 반사 임피던스, M은 상호인덕턴스, Zin은 송신측에 서 바라본 임피던스를 나타낸다. 식 (1)에서 Zin은 부하 및 상 호인덕턴스에 따라 변하기 때문에 실시간으로 계산이 불가능하 다. 또한 ZVS 동작시에는 턴 오프 시점에서 하드 스위칭으로 인한 노이즈가 발생하기 때문에 정확한 전류 센싱이 어려울 수 있다. 따라서 센싱 시점을 스위치 Q1 및 Q2가 온 되는 시점으 로 설정한다. 그림 2에서 dead time이 너무 짧을 경우 arm short로 인해 시스템이 될 수 있으며, 너무 길면 스위치 턴 오 프 시 큰 전류가 흐르게 되어 스위칭 손실이 커지기 때문에 적 절한 dead time값을 선정해야 한다. ZVS 동작을 위해 Q1 및 Q2가 켜지는 시점에서의 공진 전류는 다음 조건을 만족하여야 한다.

$$I_L < i_1 < 0$$
 (4)

이 때 IL은 최소 전류 제한값을 의미한다. 따라서 스위칭 주 파수는 (4)의 조건을 만족하도록 센싱한 공진 전류에 따라 주 파수의 증감을 통해 제어한다. 이러한 제어 방법은 매 스위칭 주기마다 한 번의 전류 센싱이 필요하므로 기존의 DSP 제어기 도 적용 가능하다. SP 토폴로지에서의 ZPA 주파수 추종 알고 리즘은 그림 3과 같다. SP 토폴로지 특성상 주파수가 증가 할 수록 입력 임피던스가 증가하기 때문에 센싱 시점에서의 공진 전류가 식 (4)의 조건 내에 있으면 주파수를 유지하고, 센싱 전 류 값이 0보다 클 경우는 주파수를 감소시키며, IL 보다 작아 지면 주파수를 증가시켜 조건 범위 내로 공진전류를 유지한다.

#### 2.3 주파수 제어 알고리즘 검증

제안한 알고리즘을 검증하기 위해 PSIM 시뮬레이션 및 3 kW급 프로토타입 실험결과에 대하여 결합계수 및 부하 변화 에 따른 ZPA 주파수 값을 그림 4에 나타내었다. k=0.13에서는 최대 0.63% 오차를 나타내며 k=0.155에서는 최대 0.65% 오차를 보였으며 이는 패드의 인덕턴스 변화에 기인한다. 그림 5는



그림 3 ZPA 주파수 추종 알고리즘

Fig. 3 ZPA frequency tracking algorithm.







각 결합계수 별 IPT 컨버터의 공진전압 (V<sub>1</sub>) 및 공진전류 (I<sub>1</sub>), 출력전압 (Vo) 파형을 나타낸다. 각 결합계수 및 부하 조건에 서 입력전압 및 출력전압이 ZPA에 가까운 ZVS 영역에서 제 어 되고 있다. 따라서 제안한 주파수 추종 알고리즘이 정상적 으로 수행되는 것을 확인할 수 있다.

## 3. 결 론

본 논문에서는 시스템의 효율, 안정성 증대 및 VA 정격 최 소화를 위한 ZPA 주파수 추종 제어 알고리즘을 제안하였다. 제안한 알고리즘은 디지털 제어기에 적용 가능하며, 매 센싱 주기의 전류 값이 ZPA 주파수에 가까운 ZVS 동작 영역에 있 도록 주파수를 제어한다. 따라서 송신측의 단독 제어로 간단한 주파수 제어가 가능하다. 3 kW급 프로토타입의 실험을 통해 제안한 알고리즘의 타당성을 확인하였다.

#### 이 논문은 ㈜현대자동차의 연구비 지원에 의하여 연구되었음

### 참 고 문 헌

- [1] Eberhard Waffenschmidt, "Dynamic Resonant Matching Method for a Wireless Power Transmission Receiver", IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6070 6077, Nov. 2015.
- [2] Chwei Sen Wang, Oskar H. Stielau, and Grant A. Covic, "Design Considerations for a Contactless Electric Vehicle Battery Charger", IEEE Trans. Ind Electron., vol. 52, no. 5, pp. 1308 1314, Oct. 2005.