Ligand Binding energy of CdS/ZnS various interfaces: ab-initio study intimately related with anisotropic CdS/ZnS quantum rod growth

  • Jeong, Incheol (Department of material science & engineering of Chungnam national university)
  • Published : 2015.03.19

Abstract

The effect of Ligand Binding energy in quantum rod (CdS/ZnS) plays a critical role in anisotropic growth. As mimicking large chain of ligands and using the head of the chain, I plan to bind the quantum rod and ligands so that it can grow well consequently. So the ultimate goal of this study is on how ligand binding can affect the growth of this quantum rod. There are preferred surfaces between the quantum rod and ligands, and we empirically know that ligands which bind the quantum rod; Phosphoric oxide (PO), Phosphoric acid(PA), Carboxylic acid(CA), Trimethylamine(TMA), have strong tendency to be attached on the surfaces of CdS/ZnS; ($11{\bar{2}}0$), ($10{\bar{1}}0$), ($000{\bar{1}}$), (0001). I virtually bond the surface and the ligands, and calculated the ligand binding energy after optimizing their structure, utilizing EDISON simulator. After all, I figured out how they are linked each other and how the quantum rod grows.

Keywords