The Effective Cross-sections of a Lensing galaxy: Singular Isothermal Sphere with External Shear

  • Published : 2015.04.10

Abstract

We present our recent work published in the MNRAS (Lee and Kim, 2014). Numerical studies of the imaging and caustic properties of the singular isothermal sphere (SIS) under a wide range of external shear (from 0.0 to 2.0) are presented. Using a direct inverse mapping formula for this lensing system, we investigate various lensing properties for both low-shear (i.e. ${\gamma}$<1.0) and high-shear (i.e. ${\gamma}$ >1.0) cases. We systematically analyse the effective lensing cross-sections of double-lensing and quadruple-lensing systems, based on the radio luminosity function obtained by the Jodrell-VLA Astrometric Survey (JVAS) and the Cosmic Lens All-Sky Survey (CLASS). We find that the limit of a survey selection bias (i.e. between brighter and fainter images) preferentially reduces the effective lensing cross-sections of two-image lensing systems. By considering the effects of survey selection bias, we demonstrate that the long-standing anomaly over the high quads-to-doubles ratios (i.e. 50~70 % for JVAS and CLASS) can be explained by the moderate effective shear of 0.16~0.18, which is half that of previous estimates. The derived inverse-mapping formula could make the SIS + shear lensing model useful for galaxy-lensing simulations.

Keywords